%I #29 Jun 17 2022 12:26:30
%S 0,0,0,1,1,3,6,20,48,164,551,2176,9985,46969,253285,1388694,8053363,
%T 48266380,294130212
%N Number of hyperbolic knots with n crossings (A002863 - A051764 - A051765).
%H Benjamin A. Burton, <a href="https://doi.org/10.4230/LIPIcs.SoCG.2020.25">The next 350 million knots</a>, 36th International Symposium on Computational Geometry (SoCG 2020), Leibniz Int. Proc. Inform., vol. 164, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020, pp. 25:1-25:17. See also knot tables in <a href="https://regina-normal.github.io/data.html">Supporting Data for Regina</a>.
%H Jim Hoste, Morwen Thistlethwaite and Jeff Weeks, <a href="http://dx.doi.org/10.1007/BF03025227">The First 1,701,936 Knots</a>, Math. Intell., 20, 33-48, Fall 1998.
%H Andrei Malyutin, <a href="http://arxiv.org/abs/1612.03368">On the question of genericity of hyperbolic knots</a>, arXiv preprint arXiv:1612.03368 [math.GT], 2016.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HyperbolicKnot.html">Hyperbolic Knot</a>.
%Y Cf. A052407.
%K nonn,nice,more
%O 1,6
%A _Eric W. Weisstein_
%E a(17)-a(19) added from Burton's data by _Andrey Zabolotskiy_, Nov 25 2021