%I #51 Sep 08 2022 08:44:59
%S 0,1,2,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,24,25,26,27,28,
%T 29,40,41,42,44,45,46,47,48,49,50,51,52,54,55,56,57,58,59,60,61,62,64,
%U 65,66,67,68,69,70,71,72,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89
%N Numbers without 3 as a digit.
%C This sequence also represents the minimal number of straight lines of a covering tree to cover n X n points arranged in a symmetrical grid. - _Marco RipĂ _, Sep 20 2018
%H Reinhard Zumkeller, <a href="/A052405/b052405.txt">Table of n, a(n) for n = 1..10000</a>
%H M. F. Hasler, <a href="/wiki/Numbers_avoiding_certain_digits">Numbers avoiding certain digits</a>, OEIS Wiki, Jan 12 2020.
%H <a href="/index/Ar#10-automatic">Index entries for 10-automatic sequences</a>.
%F a(n) >> n^k with k = log(10)/log(9) = 1.0479.... - _Charles R Greathouse IV_, Oct 16 2012
%F a(n) = replace digits d > 2 by d + 1 in base-9 representation of n - 1. - _Reinhard Zumkeller_, Oct 07 2014
%F Sum_{n>1} 1/a(n) = A082832 = 20.569877... (Kempner series). - _Bernard Schott_, Jan 12 2020, edited by _M. F. Hasler_, Jan 14 2020
%e 22 has no 3s among its digits, hence it is in the sequence.
%e 23 has one 3 among its digits, hence it is not in the sequence.
%p a:= proc(n) local l, m; l, m:= 0, n-1;
%p while m>0 do l:= (d->
%p `if`(d<3, d, d+1))(irem(m, 9, 'm')), l
%p od; parse(cat(l))/10
%p end:
%p seq(a(n), n=1..100); # _Alois P. Heinz_, Aug 01 2016
%t Select[Range[0, 89], DigitCount[#, 10, 3] == 0 &] (* _Alonso del Arte_, Oct 16 2012 *)
%o (Magma) [ n: n in [0..89] | not 3 in Intseq(n) ]; // _Bruno Berselli_, May 28 2011
%o (sh) seq 0 1000 | grep -v 3; # _Joerg Arndt_, May 29 2011
%o (PARI)
%o is(n)=n=digits(n);for(i=1,#n,if(n[i]==3,return(0)));1 \\ _Charles R Greathouse IV_, Oct 16 2012
%o apply( {A052405(n)=fromdigits(apply(d->d+(d>2),digits(n-1,9)))}, [1..99]) \\ a(n)
%o next_A052405(n, d=digits(n+=1))={for(i=1, #d, d[i]==3&& return((1+n\d=10^(#d-i))*d)); n} \\ least a(k) > n. Used in A038611. \\ _M. F. Hasler_, Jan 11 2020
%o (Haskell)
%o a052405 = f . subtract 1 where
%o f 0 = 0
%o f v = 10 * f w + if r > 2 then r + 1 else r where (w, r) = divMod v 9
%o -- _Reinhard Zumkeller_, Oct 07 2014
%Y Cf. A004178, A004722, A038611 (subset of primes), A082832 (Kempner series).
%Y Cf. A052382 (without 0), A052383 (without 1), A052404 (without 2), A052406 (without 4), A052413 (without 5), A052414 (without 6), A052419 (without 7), A052421 (without 8), A007095 (without 9).
%Y Cf. A011533 (complement).
%K base,easy,nonn
%O 1,3
%A _Henry Bottomley_, Mar 13 2000
%E Offset changed by _Reinhard Zumkeller_, Oct 07 2014