This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052378 Primes followed by a [4,2,4] prime difference pattern of A001223. 22
 7, 13, 37, 97, 103, 223, 307, 457, 853, 877, 1087, 1297, 1423, 1483, 1867, 1993, 2683, 3457, 4513, 4783, 5227, 5647, 6823, 7873, 8287, 10453, 13687, 13873, 15727, 16057, 16063, 16183, 17383, 19417, 19423, 20743, 21013, 21313, 22273, 23053, 23557 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS 1. The sequence includes A052166, A052168, A022008 and also other primes like 13, 103, 16063 etc. 2. a(n) is the lesser term of a 4-twin (A023200) after which the next 4-twin comes in minimal distance [here it is 2; see A052380(4/2)]. 3. Analogous prime sequences are A047948, A052376, A052377 and A052188-A052199 with various [d, A052380(d/2), d] difference patterns following a(n). All terms == 1 (mod 6) - Zak Seidov, Aug 27 2012 Subsequence of A022005. - R. J. Mathar, May 06 2017 LINKS Zak Seidov, Table of n, a(n) for n = 1..2000 FORMULA a(n) is the initial prime of a [p, p+4, p+6, p+6+4] prime-quadruple consisting of two 4-twins: [p, p+4] and [p+6, p+10]. EXAMPLE 103 initiates [103,107,109,113] prime quadruple followed by [4,2,4] difference pattern. MATHEMATICA a = {}; Do[If[Prime[x + 3] - Prime[x] == 10, AppendTo[a, Prime[x]]], {x, 1, 10000}]; a - Zerinvary Lajos, Apr 03 2007 Select[Partition[Prime[Range[3000]], 4, 1], Differences[#]=={4, 2, 4}&][[All, 1]] (* Harvey P. Dale, Jun 16 2017 *) PROG (PARI) is(n)=n%6==1 && isprime(n+4) && isprime(n+6) && isprime(n+10) && isprime(n) \\ Charles R Greathouse IV, Apr 29 2015 CROSSREFS Cf. A023200, A053320, A022008, A052166, A052168, A001223, A052380. Sequence in context: A118525 A213537 A094069 * A090607 A201597 A158375 Adjacent sequences:  A052375 A052376 A052377 * A052379 A052380 A052381 KEYWORD nonn AUTHOR Labos Elemer, Mar 22 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.