login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052327 Number of rooted trees with a forbidden limb of length 4. 3
1, 1, 2, 4, 8, 18, 43, 102, 251, 625, 1584, 4055, 10509, 27451, 72307, 191697, 511335, 1370995, 3693452, 9991671, 27133149, 73934800, 202096673, 553999573, 1522651908, 4195087022, 11583820212, 32052475655, 88860186023 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

A rooted tree with a forbidden limb of length k is a rooted tree where the path from any leaf inward hits a branching node or the root within k steps.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..1000

N. J. A. Sloane, Transforms

Index entries for sequences related to rooted trees

FORMULA

a(n) satisfies a = SHIFT_RIGHT(EULER(a-b)) where b(4)=1, b(k)=0 if k != 4.

a(n) ~ c * d^n / n^(3/2), where d = 2.9224691962496551739365155005926289..., c = 0.43112017460637374030857983498164... . - Vaclav Kotesovec, Aug 25 2014

MAPLE

with(numtheory):

g:= proc(n) g(n):= `if`(n=0, 1, add(add(d*(g(d-1)-

      `if`(d=4, 1, 0)), d=divisors(j))*g(n-j), j=1..n)/n)

    end:

a:= n-> g(n-1):

seq(a(n), n=1..35);  # Alois P. Heinz, Jul 04 2014

CROSSREFS

Cf. A002955, A002988-A002992, A052318-A052329.

Column k=4 of A255636.

Sequence in context: A027056 A024428 A049075 * A059221 A193617 A233139

Adjacent sequences:  A052324 A052325 A052326 * A052328 A052329 A052330

KEYWORD

nonn

AUTHOR

Christian G. Bower, Dec 15 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 03:54 EST 2016. Contains 278698 sequences.