|
|
A052303
|
|
Number of asymmetric Greg trees.
|
|
8
|
|
|
1, 1, 0, 0, 0, 0, 1, 4, 12, 42, 137, 452, 1491, 4994, 16831, 57408, 197400, 685008, 2395310, 8437830, 29917709, 106724174, 382807427, 1380058180, 4998370015, 18181067670, 66393725289, 243347195594, 894959868983, 3301849331598, 12217869541117, 45335177297876
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,8
|
|
COMMENTS
|
A Greg tree can be described as a tree with 2-colored nodes where only the black nodes are counted and the white nodes are of degree at least 3.
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 0..1668
Index entries for sequences related to trees
|
|
FORMULA
|
G.f.: 1+B(x)-B(x)^2 where B(x) is g.f. of A052301.
|
|
MAPLE
|
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(g(i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
g:= n-> `if`(n<1, 0, b(n-1$2)+b(n, n-1)) :
a:= n-> `if`(n=0, 1, g(n)-add(g(j)*g(n-j), j=0..n)):
seq(a(n), n=0..40); # Alois P. Heinz, Jun 22 2018
|
|
CROSSREFS
|
Cf. A005263, A005264, A048159, A048160, A052300-A052302.
Sequence in context: A237501 A300124 A308371 * A017942 A149344 A178078
Adjacent sequences: A052300 A052301 A052302 * A052304 A052305 A052306
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Christian G. Bower, Nov 15 1999.
|
|
STATUS
|
approved
|
|
|
|