login
Triangle read by rows: T(n,k) = number of labeled digraphs with n nodes and k arcs and without directed paths of length >=2, with 0 <= k <= floor(n^2/4).
6

%I #13 Feb 05 2024 09:44:41

%S 1,1,1,2,1,6,6,1,12,36,32,6,1,20,120,280,280,120,20,1,30,300,1320,

%T 2910,3492,2400,960,210,20,1,42,630,4480,17220,39144,56294,53760,

%U 35070,15680,4662,840,70,1,56,1176,12320,73220,269136,654304,1108928,1362900

%N Triangle read by rows: T(n,k) = number of labeled digraphs with n nodes and k arcs and without directed paths of length >=2, with 0 <= k <= floor(n^2/4).

%F G.f. for n-th row: Sum_{k=0..n} binomial(n, k)*((1+x)^k-1)^(n-k). - _Vladeta Jovovic_, Apr 04 2003

%F E.g.f.: Sum_{n>=0} exp(y*((1+x)^n-1))*y^n/n!. - _Vladeta Jovovic_, May 28 2004

%F T(n,3) = n*(n-1)*(n-2)*(n-3)*(n^2-3*n+4)/6, n>=4. - _R. J. Mathar_, Mar 16 2021

%e 1;

%e 1;

%e 1, 2;

%e 1, 6, 6;

%e 1, 12, 36, 32, 6;

%e 1, 20, 120, 280, 280, 120, 20;

%e 1, 30, 300, 1320, 2910, 3492, 2400, 960, 210, 20;

%e ...

%p A052296 := proc(n,k)

%p local x,l ;

%p add(binomial(n,l)*((1+x)^l-1)^(n-l),l=0..n) ;

%p expand(%) ;

%p coeftayl(%,x=0,k) ;

%p end proc: # _R. J. Mathar_, Mar 16 2021

%Y Row sums give A001831.

%Y Cf. A002378 (k=1), A083374 (k=2).

%K nonn,tabf

%O 0,4

%A _Vladeta Jovovic_, Feb 08 2000