This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052273 Number of distinct 4th powers mod n. 14
 1, 2, 2, 2, 2, 4, 4, 2, 4, 4, 6, 4, 4, 8, 4, 2, 5, 8, 10, 4, 8, 12, 12, 4, 6, 8, 10, 8, 8, 8, 16, 4, 12, 10, 8, 8, 10, 20, 8, 4, 11, 16, 22, 12, 8, 24, 24, 4, 22, 12, 10, 8, 14, 20, 12, 8, 20, 16, 30, 8, 16, 32, 16, 6, 8, 24, 34, 10, 24, 16, 36, 8, 19, 20, 12, 20 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This sequence is multiplicative [Li]. - Leon P Smith, Apr 16 2005 LINKS T. D. Noe, Table of n, a(n) for n=1..1000 S. Li, On the number of elements with maximal order in the multiplicative group modulo n, Acta Arithm. 86 (2) (1998) 113, see proof of theorem 2.1 FORMULA Conjecture: a(2^e) = 1+floor[2^e/(2^4-1)] if e ==0 (mod 4). a(2^e) = 2+floor[2^e/(2^4-1)] if e == {1,2,3} mod 4. - R. J. Mathar, Oct 22 2017 Conjecture: a(p^e) = 1+floor[ (p-1)*p^(e+3)/{gcd(p-1,4)*(p^4-1)}] for odd primes p. - R. J. Mathar, Oct 22 2017 MAPLE A052273 := proc(n, k) local i; nops({seq(i^k mod n, i=0..n-1)}); end; # number of k-th powers mod n PROG (PARI) a(n)=my(f=factor(n)); prod(i=1, #f[, 1], my(k=f[i, 1]^f[i, 2]); #vecsort(vector(k, i, i^4%k), , 8)) \\ Charles R Greathouse IV, May 26 2013 CROSSREFS Cf. A000224 (squares), A046530 (cubic residues), A052274 (5th powers), A052275 (6th powers), A085310 (7th powers), A085311 (8th powers), A085312 (9th powers), A085313 (10th powers), A085314 (11th powers), A228849 (12th powers). Sequence in context: A023155 A277847 A085311 * A074912 A274207 A158502 Adjacent sequences:  A052270 A052271 A052272 * A052274 A052275 A052276 KEYWORD nonn,mult AUTHOR N. J. A. Sloane, Feb 05 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 01:40 EDT 2019. Contains 328025 sequences. (Running on oeis4.)