login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052273 Number of distinct 4th powers mod n. 14
1, 2, 2, 2, 2, 4, 4, 2, 4, 4, 6, 4, 4, 8, 4, 2, 5, 8, 10, 4, 8, 12, 12, 4, 6, 8, 10, 8, 8, 8, 16, 4, 12, 10, 8, 8, 10, 20, 8, 4, 11, 16, 22, 12, 8, 24, 24, 4, 22, 12, 10, 8, 14, 20, 12, 8, 20, 16, 30, 8, 16, 32, 16, 6, 8, 24, 34, 10, 24, 16, 36, 8, 19, 20, 12, 20 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This sequence is multiplicative [Li]. - Leon P Smith, Apr 16 2005

LINKS

T. D. Noe, Table of n, a(n) for n=1..1000

S. Li, On the number of elements with maximal order in the multiplicative group modulo n, Acta Arithm. 86 (2) (1998) 113, see proof of theorem 2.1

FORMULA

Conjecture: a(2^e) = 1+floor[2^e/(2^4-1)] if e ==0 (mod 4). a(2^e) = 2+floor[2^e/(2^4-1)] if e == {1,2,3} mod 4. - R. J. Mathar, Oct 22 2017

Conjecture: a(p^e) = 1+floor[ (p-1)*p^(e+3)/{gcd(p-1,4)*(p^4-1)}] for odd primes p. - R. J. Mathar, Oct 22 2017

MAPLE

A052273 := proc(n, k) local i; nops({seq(i^k mod n, i=0..n-1)}); end; # number of k-th powers mod n

PROG

(PARI) a(n)=my(f=factor(n)); prod(i=1, #f[, 1], my(k=f[i, 1]^f[i, 2]); #vecsort(vector(k, i, i^4%k), , 8)) \\ Charles R Greathouse IV, May 26 2013

CROSSREFS

Cf. A000224 (squares), A046530 (cubic residues), A052274 (5th powers), A052275 (6th powers), A085310 (7th powers), A085311 (8th powers), A085312 (9th powers), A085313 (10th powers), A085314 (11th powers), A228849 (12th powers).

Sequence in context: A023155 A277847 A085311 * A074912 A274207 A158502

Adjacent sequences:  A052270 A052271 A052272 * A052274 A052275 A052276

KEYWORD

nonn,mult

AUTHOR

N. J. A. Sloane, Feb 05 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 01:40 EDT 2019. Contains 328025 sequences. (Running on oeis4.)