login
A052245
Expansion of 10*x / ((1 - x) * (1 - 10*x)^2) in powers of x.
1
0, 10, 210, 3210, 43210, 543210, 6543210, 76543210, 876543210, 9876543210, 109876543210, 1209876543210, 13209876543210, 143209876543210, 1543209876543210, 16543209876543210, 176543209876543210, 1876543209876543210, 19876543209876543210, 209876543209876543210
OFFSET
0,2
COMMENTS
This is not the same as A052246. They differ at a(11) and beyond. - Michael Somos, Sep 14 2014
FORMULA
a(n) = n*10^n+a(n-1), a(0) = 0; a(n) = ((9n-1)*10^n + 1) * 10 / 81; a(n) = A014925(n)*10.
a(n) = 21*a(n-1)-120*a(n-2)+100*a(n-3). - Colin Barker, Sep 13 2014
G.f.: -10*x / ((x-1)*(10*x-1)^2). - Colin Barker, Sep 13 2014
MAPLE
seq(sum(x*10^x, x=0..a), a=0..100); # Jorge Coveiro, Dec 22 2004
a:=n->sum((10^(n-j)*(n-j)), j=0..n): seq(a(n), n=0..16); # Zerinvary Lajos, Jun 05 2008
PROG
(PARI) concat(0, Vec(-10*x/((x-1)*(10*x-1)^2) + O(x^100))) \\ Colin Barker, Sep 13 2014
CROSSREFS
Sequence in context: A160476 A067642 A334537 * A052246 A001450 A076803
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Feb 01 2000
EXTENSIONS
More terms from Colin Barker, Sep 13 2014
STATUS
approved