login
Partial sums of A050404.
3

%I #25 Sep 08 2022 08:44:59

%S 1,15,92,372,1170,3102,7260,15444,30459,56485,99528,167960,273156,

%T 430236,658920,984504,1438965,2062203,2903428,4022700,5492630,7400250,

%U 9849060,12961260,16880175,21772881,27833040,35283952,44381832,55419320,68729232,84688560,103722729,126310119

%N Partial sums of A050404.

%D A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

%D Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.

%H G. C. Greubel, <a href="/A052226/b052226.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8,-28,56,-70,56,-28,8,-1).

%F a(n) = (8*n+7)*C(n+6, 6)/7.

%F G.f.: (1+7*x)/(1-x)^8.

%F E.g.f.: (5040 +70560*x +158760*x^2 +117600*x^3 +36750*x^4 +5292*x^5 +343*x^6 +8*x^7)*exp(x)/5040. - _G. C. Greubel_, Aug 29 2019

%p seq((8*n+7)*Binomial(n+6, 6)/7, n=0..40); # _G. C. Greubel_, Aug 29 2019

%t Table[(8*n+7)*Binomial[n+6, 6]/7, {n,0,40}] (* _G. C. Greubel_, Aug 29 2019 *)

%t LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,15,92,372,1170,3102,7260,15444},40] (* _Harvey P. Dale_, Aug 12 2021 *)

%o (PARI) vector(40, n, (8*n-1)*binomial(n+5, 6)/7) \\ _G. C. Greubel_, Aug 29 2019

%o (Magma) [(8*n+7)*Binomial(n+6, 6)/7: n in [0..40]]; // _G. C. Greubel_, Aug 29 2019

%o (Sage) [(8*n+7)*binomial(n+6, 6)/7 for n in (0..40)] # _G. C. Greubel_, Aug 29 2019

%o (GAP) List([0..40], n-> (8*n+7)*Binomial(n+6, 6)/7); # _G. C. Greubel_, Aug 29 2019

%Y Cf. A050404.

%Y Cf. A093565 ((8, 1) Pascal, column m=7).

%K easy,nonn

%O 0,2

%A _Barry E. Williams_, Jan 29 2000

%E Terms a(25) onward added by _G. C. Greubel_, Aug 29 2019