%I #7 Mar 10 2018 08:34:00
%S 1,2,4,6,10,16,28
%N Length of shortest dominating path in binary hypercube of dimension n.
%H Jernej Azarija, S. Klavzar, Y. Rho, S. Sim, <a href="https://www.fmf.uni-lj.si/~klavzar/preprints/Total-dom-cubes-submit.pdf">On domination-type invariants of Fibonacci cubes and hypercubes</a>, Preprint 2016; See Table 4.
%H Jernej Azarija, S. Klavzar, Y. Rho, S. Sim, <a href="https://amc-journal.eu/index.php/amc/article/view/1172">On domination-type invariants of Fibonacci cubes and hypercubes</a>, Ars Mathematica Contemporanea, 14 (2018) 387-395. See Table 4.
%H U. Blass, I. Honkala, M. Karpovsky and S. Litsyn, <a href="http://www.eng.tau.ac.il/~litsyn/papers/worm.ps">Short dominating paths and cycles in the binary hypercube</a>, Ann. Comb. 5 (2001), no. 1, 51-59.
%Y Cf. A052184.
%K nonn,nice,more
%O 1,2
%A Simon Litsyn (litsyn(AT)eng.tau.ac.il), Jan 28 2000