This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052182 Determinant of n X n matrix whose rows are cyclic permutations of 1..n. 19
 1, -3, 18, -160, 1875, -27216, 470596, -9437184, 215233605, -5500000000, 155624547606, -4829554409472, 163086595857367, -5952860799406080, 233543408203125000, -9799832789158199296, 437950726881001816329, -20766159817517617053696, 1041273502979112415328410 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Each row is a cyclic shift to the right by one place of the previous row. See the example below. - N. J. A. Sloane, Jan 07 2019 |a(n)| = number of labeled mappings from n points to themselves (endofunctions) with an odd number of cycles. - Vladeta Jovovic, Mar 30 2006 |a(n)| = number of functions from {1,2,...,n}->{1,2,...,n} such that of all recurrent elements the least is always mapped to the greatest. - Geoffrey Critzer, Aug 29 2013 LINKS T. D. Noe, Table of n, a(n) for n = 1..100 P. J. Cameron and P. Cara, Independent generating sets and geometries for symmetric groups, J. Algebra, Vol. 258, no. 2 (2002), 641-650. FORMULA a(n) = (-1)^(n-1) * n^(n-2) * (n^2 + n)/2. E.g.f.[A052182] = E.g.f.[A000312] * E.g.f.[A000272], so A052182(unsigned) is "tree-like". E.g.f.: (T-T^2/2)/(1-T), where T=T(x) is Euler's tree function (see A000169). E.g.f. for signed sequence: (W+W^2/2)/(1+W), where W=W(x)=-T(-x) is the Lambert W function. - Len Smiley, Dec 13 2001 Conjecture: a(n) = -Res( f(n), x^n - 1), where Res is the resultant and f(n) = Sum_{k=1..n} k*x^k. - Benedict W. J. Irwin, Dec 07 2016 EXAMPLE a(3) = 18 because this is the determinant of [(1,2,3), (3,1,2), (2,3,1) ]. MAPLE 1, seq(LinearAlgebra:-Determinant(Matrix(n, shape=Circulant[\$1..n])), n=2..30); # Robert Israel, Aug 31 2014 MATHEMATICA f[n_] := Det[ Table[ RotateLeft[ Range@ n, -j], {j, 0, n - 1}]]; Array[f, 19] (* or *) f[n_] := (-1)^(n - 1)*n^(n - 2)*(n^2 + n)/2; Array[f, 19] (* Robert G. Wilson v, Aug 31 2014 *) PROG (MuPAD) (1+n)^(n-1)*binomial(n+2, n)*(-1)^(n) \$ n=0..16 // Zerinvary Lajos, Apr 01 2007 (PARI) a(n) = (n+1)*(-n)^(n-1)/2; \\ Altug Alkan, Dec 17 2017 CROSSREFS Cf. A000312, A070896, A060281, A060435. Sequence in context: A238302 A067302 A212599 * A309985 A328030 A301371 Adjacent sequences:  A052179 A052180 A052181 * A052183 A052184 A052185 KEYWORD easy,sign,nice AUTHOR Henry M. Gunn High School Mathematical Circle (Joshua Zucker), Jan 26 2000 EXTENSIONS More terms from James A. Sellers, Jan 31 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 03:34 EDT 2019. Contains 328211 sequences. (Running on oeis4.)