login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052182 Determinant of n X n matrix whose rows are cyclic permutations of 1..n. 18
1, -3, 18, -160, 1875, -27216, 470596, -9437184, 215233605, -5500000000, 155624547606, -4829554409472, 163086595857367, -5952860799406080, 233543408203125000, -9799832789158199296, 437950726881001816329, -20766159817517617053696, 1041273502979112415328410 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

|a(n)| = number of labeled mappings from n points to themselves (endofunctions) with an odd number of cycles. - Vladeta Jovovic, Mar 30 2006

|a(n)| = number of functions from {1,2,...,n}->{1,2,...,n} such that of all recurrent elements the least is always mapped to the greatest. - Geoffrey Critzer, Aug 29 2013

LINKS

T. D. Noe, Table of n, a(n) for n = 1..100

P. J. Cameron and P. Cara, Independent generating sets and geometries for symmetric groups, J. Algebra, Vol. 258, no. 2 (2002), 641-650.

FORMULA

a(n) = (-1)^(n-1) * n^(n-2) * (n^2 + n)/2.

E.g.f.[A052182] = E.g.f.[A000312] * E.g.f.[A000272], so A052182(unsigned) is "tree-like". E.g.f.: (T-T^2/2)/(1-T), where T=T(x) is Euler's tree function (see A000169). E.g.f. for signed sequence: (W+W^2/2)/(1+W), where W=W(x)=-T(-x) is the Lambert W function. - Len Smiley, Dec 13 2001

Conjecture: a(n) = -Res( f(n), x^n - 1), where Res is the resultant and f(n) = Sum_{k=1..n} k*x^k. - Benedict W. J. Irwin, Dec 07 2016

EXAMPLE

a(3) = 18 because this is the determinant of [(1,2,3), (3,1,2), (2,3,1) ].

MAPLE

1, seq(LinearAlgebra:-Determinant(Matrix(n, shape=Circulant[$1..n])), n=2..30); # Robert Israel, Aug 31 2014

MATHEMATICA

f[n_] := Det[ Table[ RotateLeft[ Range@ n, -j], {j, 0, n - 1}]]; Array[f, 19] (* or *)

f[n_] := (-1)^(n - 1)*n^(n - 2)*(n^2 + n)/2; Array[f, 19]

(* Robert G. Wilson v, Aug 31 2014 *)

PROG

(MuPAD) (1+n)^(n-1)*binomial(n+2, n)*(-1)^(n) $ n=0..16 // Zerinvary Lajos, Apr 01 2007

(PARI) a(n) = (n+1)*(-n)^(n-1)/2; \\ Altug Alkan, Dec 17 2017

CROSSREFS

Cf. A000312, A070896, A060281, A060435.

Sequence in context: A238302 A067302 A212599 * A301371 A115415 A065058

Adjacent sequences:  A052179 A052180 A052181 * A052183 A052184 A052185

KEYWORD

easy,sign,nice

AUTHOR

Henry M. Gunn High School Mathematical Circle (Joshua Zucker), Jan 26 2000

EXTENSIONS

More terms from James A. Sellers, Jan 31 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 14:53 EDT 2018. Contains 316490 sequences. (Running on oeis4.)