login
A052167
Primes at which difference pattern X2424Y (X and Y >= 6) occurs in A001223.
2
1481, 21011, 22271, 55331, 144161, 165701, 166841, 195731, 201821, 225341, 247601, 268811, 326141, 347981, 361211, 397751, 465161, 518801, 536441, 633461, 633791, 661091, 768191, 795791, 829721, 857951, 876011, 958541, 1008851
OFFSET
1,1
EXAMPLE
21011 is here because 21011+{2,2+4,2+4+2,2+4+2+4}=21011+{1,6,8,12}= {21013,21013,21017,21019,21023} are consecutive primes but the primes in the immediate neighborhood (21001 and 21031) are in distance 10 and 8. Thus the d-pattern "around 21011" is {10,2,4,2,4,12}.
MATHEMATICA
patQ[n_]:=Module[{d=Differences[n]}, First[d]>5&&Last[d]>5&&Most[ Rest[d]] == {2, 4, 2, 4}]; Transpose[Select[Partition[Prime[ Range[ 80000]], 7, 1], patQ]] [[2]] (* Harvey P. Dale, Dec 11 2013 *)
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 26 2000
STATUS
approved