login
A052166
Primes at which the difference pattern X424Y (X and Y >= 6) occurs in A001223.
2
37, 223, 307, 457, 853, 877, 1087, 1297, 1423, 1993, 2683, 4513, 4783, 5227, 6823, 7873, 8287, 10453, 13687, 13873, 16183, 17383, 20743, 21313, 23053, 23557, 23623, 24103, 27733, 29017, 31387, 33343, 33613, 35527, 36007, 37987, 40423, 42013
OFFSET
1,1
EXAMPLE
37 is here because 37 + 4 = 41, 37 + 4 + 2 = 43, 37 + 4 + 2 + 4 = 47 are consecutive primes and the prime preceding 37 is 31, the prime following 47 is 53, and the corresponding differences are 6 and 6. Thus the d-pattern "around 37" is {6,4,2,4}.
MATHEMATICA
okQ[n_List]:=Module[{d=Differences[n]}, Take[d, {2, 4}]=={4, 2, 4} && First[d]>5&&Last[d]>5]; Transpose[Select[ Partition[ Prime[ Range[ 4400]], 6, 1], okQ]][[2]] (* Harvey P. Dale, Jul 17 2011 *)
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 26 2000
STATUS
approved