login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052127 Sum a(n) x^n / n!^2 = exp(-2x)/(1-x)^3. 3
1, 1, 8, 96, 2112, 68160, 3087360, 185633280, 14301020160, 1372232171520, 160390869811200, 22426206024499200, 3695148753459609600, 708443854690399027200, 156340439420689081958400, 39342248735234589720576000, 11197266840049016358567936000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

As described in the Stanley reference, this sequence gives the expectation of the fourth moment of a random sign matrix (a matrix whose entries are independently set equal to -1 or 1 with equal probability) of size n. For large n, a(n) asymptotic to (n!)^2 (n^2+7n+10)/(2e^2) . - Kevin P. Costello (kcostell(AT)gmail.com), Oct 22 2007

REFERENCES

R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.64(b).

Szekeres, G. The average value of skew Hadamard matrices. Proceedings of the First Australian Conference on Combinatorial Mathematics (Univ. Newcastle, Newcastle, 1972), pp. 55--59. Univ. of Newcastle Res. Associates, Newcastle, 1972. MR0349708 (50 #2201). This is S_4(n).

LINKS

Table of n, a(n) for n=0..16.

FORMULA

a(n) = (n!)^2*A209429(n)/A209430(n). [Szekeres]

CROSSREFS

Cf. A052124.

Sequence in context: A002168 A114425 A224767 * A002506 A218451 A262777

Adjacent sequences:  A052124 A052125 A052126 * A052128 A052129 A052130

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jan 23 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 13 19:20 EST 2017. Contains 295976 sequences.