login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052110 The decimal expansion of c^c^c^...  where c is the constant defined in A037077. 1
4, 6, 1, 9, 2, 1, 4, 4, 0, 1, 6, 4, 4, 1, 1, 4, 4, 5, 4, 0, 8, 5, 8, 8, 6, 4, 2, 6, 1, 4, 1, 9, 4, 5, 7, 8, 6, 3, 5, 0, 2, 8, 2, 8, 0, 1, 3, 6, 4, 8, 8, 2, 2, 8, 4, 4, 3, 4, 1, 6, 2, 9, 2, 7, 3, 5, 8, 9, 1, 7, 2, 5, 0, 2, 1, 4, 1, 5, 0, 1, 9, 5, 2, 8, 7, 5, 1, 9, 9, 4, 2, 2, 2, 5, 8, 7, 8, 6, 0, 4, 7, 3, 5, 7, 5 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See (Weisstein) link on Power Tower.

REFERENCES

S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 448-452.

LINKS

Table of n, a(n) for n=0..104.

Eric Weisstein's World of Mathematics, Power Tower

Gus Wiseman, Tetration

OEIS Wiki, Tetration

OEIS Wiki, MRB constant

Wikipedia, Tetration

EXAMPLE

=0.4619214401644114454085886426141945786350282801364882284434162927358917250...

MATHEMATICA

n = 105; M = NSum[(-1)^n*(n^(1/n) - 1), {n, 1, Infinity}, WorkingPrecision -> n + 10, Method -> "AlternatingSigns"]; L = Log[M]; N[-ProductLog[-L]/L, n] (* Marvin Ray Burns, Mar 08 2013 *)

PROG

(PARI)

default(realprecision, 66);

M=sumalt(x=1, (-1)^x*((x^(1/x))-1));

solve(x=.46, .462, x^(1/x)-M)

CROSSREFS

Cf. A037077, A000027, A000312, A002488, A073230.

Sequence in context: A199371 A156789 A195423 * A197020 A202321 A195425

Adjacent sequences:  A052107 A052108 A052109 * A052111 A052112 A052113

KEYWORD

cons,nonn

AUTHOR

Marvin Ray Burns Jan 20 2000, Mar 28 2008, Nov 08 2009, Mar 24 2010, Jun 27 2011

EXTENSIONS

Simplified definition by Marvin Ray Burns, Mar 08 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 7 06:47 EST 2021. Contains 341868 sequences. (Running on oeis4.)