%I #26 May 12 2023 16:27:48
%S 7744,228484,332929,339889,511225,698896,774400,776161,797449,
%T 11303044,11464996,15295921,16621929,22848400,25775929,27447121,
%U 28826161,33292900,33454656,33512521,33988900,34316164,42549529,45643536,45859984,47969476,48177481,50509449,51122500
%N Squares whose digits occur with an equal minimal frequency of 2.
%C There are A225428(10)=597959 terms in this sequence. The last term is 99887301530267526144 = 9994363488^2. - _Hugo Pfoertner_, May 12 2023
%H Patrick De Geest, <a href="http://www.worldofnumbers.com/samedigits.htm">Numbers whose digits occur with same frequency</a>
%t Select[Table[n^2, {n, 6760}], Union[Last[Transpose[Tally[IntegerDigits[#]]]]] == {2} &] (* _Jayanta Basu_, Jun 17 2013 *)
%o (Python)
%o from itertools import islice
%o from collections import Counter
%o def afull(): yield from (x**2 for x in range(10**10) if set(Counter(str(x**2)).values()) == {2})
%o print(list(islice(afull(), 47))) # _Michael S. Branicky_, May 12 2023
%Y Cf. A052049, A045540, A052046, A052047, A052048, A052051, A052052, A225428.
%K nonn,base,fini
%O 1,1
%A _Patrick De Geest_, Dec 15 1999