|
|
A052022
|
|
Smallest number m larger than prime(n) such that prime(n) = sum of digits of m and prime(n) = largest prime factor of m (or 0 if no such number exists).
|
|
7
|
|
|
12, 50, 70, 308, 364, 476, 1729, 4784, 9947, 8959, 38998, 588965, 179998, 1879859, 5988788, 38778989, 79693999, 287978998, 1489989599, 4595969989, 6888999949, 45999897788, 197999598599, 3999966997975, 6849998899886, 7885998969988, 35889999789995, 39969896999968
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,1
|
|
COMMENTS
|
Does there exist a solution for every prime p?
|
|
LINKS
|
Table of n, a(n) for n=2..29.
|
|
EXAMPLE
|
p=43 -> a(14)=179998 -> 1+7+9+9+9+8 = 43 and 179998 = 2*7*13*23*43. p=47 -> a(15)=1879859 -> 1+8+7+9+8+5+9 = 47 and 1879859 = 23*37*47*47.
|
|
MAPLE
|
A052022(n) = {
local( p, m );
p=prime(n) ;
for(k=2, 1000000000,
m=k*p;
if( A007953(m) == p && A006530(m) == p,
return(m) ;
)
) ;
} # R. J. Mathar, Mar 02 2012
|
|
MATHEMATICA
|
snm[n_]:=Module[{k=2, p=Prime[n], m}, m=k p; While[Total[ IntegerDigits[ m]]!=p||FactorInteger[m][[-1, 1]]!=p, k++; m=k p]; m]; Array[snm, 18, 2] (* Harvey P. Dale, Feb 28 2012 *)
|
|
CROSSREFS
|
Cf. A052018, A052019, A052020, A052021, A007953, A005349, A028834.
Sequence in context: A041274 A029586 A081292 * A110907 A009937 A009932
Adjacent sequences: A052019 A052020 A052021 * A052023 A052024 A052025
|
|
KEYWORD
|
nonn,base,nice
|
|
AUTHOR
|
Patrick De Geest, Nov 15 1999
|
|
EXTENSIONS
|
a(20)-a(29) from Donovan Johnson, May 09 2012
|
|
STATUS
|
approved
|
|
|
|