login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052022 Smallest number m larger than prime(n) such that prime(n) = sum of digits of m and prime(n) = largest prime factor of m (or 0 if no such number exists). 7
12, 50, 70, 308, 364, 476, 1729, 4784, 9947, 8959, 38998, 588965, 179998, 1879859, 5988788, 38778989, 79693999, 287978998, 1489989599, 4595969989, 6888999949, 45999897788, 197999598599, 3999966997975, 6849998899886, 7885998969988, 35889999789995, 39969896999968 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

Does there exist a solution for every prime p?

LINKS

Table of n, a(n) for n=2..29.

EXAMPLE

p=43 -> a(14)=179998 -> 1+7+9+9+9+8 = 43 and 179998 = 2*7*13*23*43. p=47 -> a(15)=1879859 -> 1+8+7+9+8+5+9 = 47 and 1879859 = 23*37*47*47.

MAPLE

A052022(n) = {

  local( p, m );

  p=prime(n) ;

  for(k=2, 1000000000,

    m=k*p;

    if( A007953(m) == p && A006530(m) == p,

        return(m) ;

    )

  ) ;

} # R. J. Mathar, Mar 02 2012

MATHEMATICA

snm[n_]:=Module[{k=2, p=Prime[n], m}, m=k p; While[Total[ IntegerDigits[ m]]!=p||FactorInteger[m][[-1, 1]]!=p, k++; m=k p]; m]; Array[snm, 18, 2] (* Harvey P. Dale, Feb 28 2012 *)

CROSSREFS

Cf. A052018, A052019, A052020, A052021, A007953, A005349, A028834.

Sequence in context: A041274 A029586 A081292 * A110907 A009937 A009932

Adjacent sequences:  A052019 A052020 A052021 * A052023 A052024 A052025

KEYWORD

nonn,base,nice

AUTHOR

Patrick De Geest, Nov 15 1999

EXTENSIONS

a(20)-a(29) from Donovan Johnson, May 09 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 04:14 EST 2019. Contains 329784 sequences. (Running on oeis4.)