login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051946 G.f.: (1+4*x)/(1-x)^7. 6
1, 11, 56, 196, 546, 1302, 2772, 5412, 9867, 17017, 28028, 44408, 68068, 101388, 147288, 209304, 291669, 399399, 538384, 715484, 938630, 1216930, 1560780, 1981980, 2493855, 3111381, 3851316, 4732336, 5775176, 7002776, 8440432 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 18 2005

Equals row sums of triangle A143130, & binomial transform of {1, 10, 35, 60, 55, 26, 5, 0, 0, 0,...]. - Gary W. Adamson, Jul 27 2008

REFERENCES

A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.233, # 5).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).

FORMULA

a(n) = C(n+5,5)*(5*n+6)/6.

a(n) = (n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(5*n+6)/720. - Emeric Deutsch, Jun 18 2005

a(n) = A034264(n+1). - R. J. Mathar, Oct 14 2008

MAPLE

a:=n->(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(5*n+6)/720: seq(a(n), n=0..35); # Emeric Deutsch

MATHEMATICA

CoefficientList[Series[(1 + 4 x)/(1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *)

PROG

(MAGMA) [(5*n+6)*Binomial(n+5, 5)/6: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014

CROSSREFS

Partial sums of A027800.

Cf. A093562 ((5, 1) Pascal, column m=6).

Cf. A143130.

Cf. similar sequences listed in A254142.

Sequence in context: A224154 A079547 A034264 * A224405 A201150 A114030

Adjacent sequences:  A051943 A051944 A051945 * A051947 A051948 A051949

KEYWORD

nonn,easy

AUTHOR

Barry E. Williams, Dec 20 1999

EXTENSIONS

Corrected and extended by Emeric Deutsch, Jun 18 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 20 10:31 EST 2017. Contains 294963 sequences.