This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A051946 G.f.: (1+4*x)/(1-x)^7. 6
 1, 11, 56, 196, 546, 1302, 2772, 5412, 9867, 17017, 28028, 44408, 68068, 101388, 147288, 209304, 291669, 399399, 538384, 715484, 938630, 1216930, 1560780, 1981980, 2493855, 3111381, 3851316, 4732336, 5775176, 7002776, 8440432 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS KekulĂ© numbers for certain benzenoids. - Emeric Deutsch, Jun 18 2005 Equals row sums of triangle A143130, & binomial transform of {1, 10, 35, 60, 55, 26, 5, 0, 0, 0,...]. - Gary W. Adamson, Jul 27 2008 REFERENCES A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196. S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.233, # 5). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1). FORMULA a(n) = C(n+5,5)*(5*n+6)/6. a(n) = (n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(5*n+6)/720. - Emeric Deutsch, Jun 18 2005 a(n) = A034264(n+1). - R. J. Mathar, Oct 14 2008 MAPLE a:=n->(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(5*n+6)/720: seq(a(n), n=0..35); # Emeric Deutsch MATHEMATICA CoefficientList[Series[(1 + 4 x)/(1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *) PROG (MAGMA) [(5*n+6)*Binomial(n+5, 5)/6: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014 CROSSREFS Partial sums of A027800. Cf. A093562 ((5, 1) Pascal, column m=6). Cf. A143130. Cf. similar sequences listed in A254142. Sequence in context: A224154 A079547 A034264 * A224405 A201150 A114030 Adjacent sequences:  A051943 A051944 A051945 * A051947 A051948 A051949 KEYWORD nonn,easy AUTHOR Barry E. Williams, Dec 20 1999 EXTENSIONS Corrected and extended by Emeric Deutsch, Jun 18 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 24 02:32 EDT 2019. Contains 326260 sequences. (Running on oeis4.)