This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A051930 Number of independent sets of vertices in graph K_5 X C_n (n > 2). 2
 6, 1, 31, 136, 731, 3771, 19606, 101781, 528531, 2744416, 14250631, 73997551, 384238406, 1995189561, 10360186231, 53796120696, 279340789731, 1450500069331, 7531841136406, 39109705751341, 203080369893131, 1054511555216976, 5475638145978031, 28432702285107111 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (4,6,1). FORMULA a(n) = 4*a(n-1) + 6*a(n-2) + a(n-3). G.f.: (6 - 23*x - 9*x^2) / ((1 + x)*(1 - 5*x - x^2)). - Colin Barker, May 22 2012 From Colin Barker, Nov 24 2017: (Start) a(n) = ((5-sqrt(29))/2)^n + ((5+sqrt(29))/2)^n + 4 for n even. a(n) = ((5-sqrt(29))/2)^n + ((5+sqrt(29))/2)^n - 4 for n odd. (End) MATHEMATICA LinearRecurrence[{4, 6, 1}, {6, 1, 31}, 30] (* Vincenzo Librandi, Jun 17 2012 *) PROG (MAGMA) I:=[6, 1, 31]; [n le 3 select I[n] else 4*Self(n-1)+6*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 17 2012 (PARI) Vec((6 - 23*x - 9*x^2) / ((1 + x)*(1 - 5*x - x^2)) + O(x^40)) \\ Colin Barker, Nov 24 2017 CROSSREFS Row 5 of A287376. Sequence in context: A178726 A030524 A241171 * A147320 A038255 A075501 Adjacent sequences:  A051927 A051928 A051929 * A051931 A051932 A051933 KEYWORD easy,nonn AUTHOR Stephen G. Penrice (spenrice(AT)ets.org), Dec 19 1999 EXTENSIONS More terms from James A. Sellers, Dec 20 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 18 03:40 EDT 2018. Contains 300613 sequences. (Running on oeis4.)