login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051925 a(n) = n*(2*n+5)*(n-1)/6. 24
0, 0, 3, 11, 26, 50, 85, 133, 196, 276, 375, 495, 638, 806, 1001, 1225, 1480, 1768, 2091, 2451, 2850, 3290, 3773, 4301, 4876, 5500, 6175, 6903, 7686, 8526, 9425, 10385, 11408, 12496, 13651, 14875, 16170, 17538, 18981, 20501, 22100, 23780 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Related to variance of number of inversions of a random permutation of n letters.

Zero followed by partial sums of A005563. - Klaus Brockhaus, Oct 17 2008

Definition: a(n) = A000330(n)-n (square pyramidal numbers minus natural numbers). - Andrey Kostenko, Nov 30 2008

a(n)/12 is the variance of the number of inversions of a random permutation of n letters. See evidence in Mathematica code below. - Geoffrey Critzer, May 15 2010

The sequence is related to A033487 by A033487(n-1) = n*a(n) - Sum_{i=0..n-1} a(i) = n*(n+1)*(n+2)*(n+3)/4. - Bruno Berselli, Apr 04 2012

Deleting the two 0s leaves row 2 of the convolution array A213750. - Clark Kimberling, Jun 20 2012

For n>=4, a(n-2) is the number of permutations of 1,2...,n with the distribution of up (1) - down (0) elements 0...0110 (the first n-4 zeros), or, the same, a(n-2) is up-down coefficient {n,6} (see comment in A060351). - Vladimir Shevelev, Feb 15 2014

REFERENCES

V. N. Sachkov, Probabilistic Methods in Combinatorial Analysis, Cambridge, 1997.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

J. Wang and H. Li, The upper bound of essential chromatic numbers of hypergraphs, Discr. Math. 254 (2002), 555-564.

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

G.f.: x^2*(3-x)/(1-x)^4. - Colin Barker, Apr 04 2012

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Apr 27 2012

E.g.f.: (x^2/6)*(2*x + 9)*exp(x). - G. C. Greubel, Jul 19 2017

MATHEMATICA

f[{x_, y_}] := 2 y - x^2; Table[f[Coefficient[ Series[Product[Sum[Exp[i t], {i, 0, m}], {m, 1, n - 1}]/n!, {t, 0, 2}], t, {1, 2}]], {n, 0, 41}]*12 (* Geoffrey Critzer, May 15 2010 *)

CoefficientList[Series[x^2*(3-x)/(1-x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Apr 27 2012 *)

PROG

(PARI) {print1(a=0, ", "); for(n=0, 42, print1(a=a+(n+1)^2-1, ", "))} \\ Klaus Brockhaus, Oct 17 2008

(MAGMA) I:=[0, 0, 3, 11]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Apr 27 2012

CROSSREFS

Sequence in context: A096795 A160039 A272296 * A211811 A011942 A220147

Adjacent sequences:  A051922 A051923 A051924 * A051926 A051927 A051928

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Dec 19 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 01:08 EDT 2018. Contains 315153 sequences. (Running on oeis4.)