

A051917


Inverse of n under Nim (or Conway) multiplication.


4



1, 3, 2, 15, 12, 9, 11, 10, 6, 8, 7, 5, 14, 13, 4, 170, 160, 109, 107, 131, 139, 116, 115, 228, 234, 92, 89, 73, 77, 220, 209, 85, 214, 80, 219, 199, 179, 203, 184, 66, 226, 70, 236, 156, 247, 149, 248, 255, 182, 189, 240, 120, 164, 174, 127, 142, 100, 98, 134
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The Conway product makes N into a field of characteristic 2. This is the inverse function for that field.


REFERENCES

E. R. Berlekamp, J. H. Conway and R. K. Guy, ``Winning Ways'', p. 443.
J. H. Conway, ``On Numbers and Games'', chapter 6.


LINKS

Paul Tek, Table of n, a(n) for n = 1..255
David A. Madore, Notes on game theory
Index entries for sequences related to Nimmultiplication


EXAMPLE

a(4)=15 because the Conway product of 4 and 15 is 1. And a(15)=4.


CROSSREFS

Cf. A051776.
Sequence in context: A218969 A185973 A258566 * A302845 A291251 A223523
Adjacent sequences: A051914 A051915 A051916 * A051918 A051919 A051920


KEYWORD

easy,nice,nonn


AUTHOR

David A. Madore, Dec 18 1999


EXTENSIONS

More terms from John W. Layman, Mar 01 2001


STATUS

approved



