The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A051916 The Greek sequence: 2^a * 3^b * 5^c where a = 0,1,2,3,..., b,c in {0,1}, excluding the terms 1,2; that is: (a,b,c) != (0,0,0), (1,0,0). 8
 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 64, 80, 96, 120, 128, 160, 192, 240, 256, 320, 384, 480, 512, 640, 768, 960, 1024, 1280, 1536, 1920, 2048, 2560, 3072, 3840, 4096, 5120, 6144, 7680, 8192, 10240, 12288, 15360, 16384, 20480 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS From Reinhard Zumkeller, Mar 19 2010: (Start) a(n+4) = 2*a(n) for n > 8; union of A007283, A020707, A020714, and A110286; intersection of A051037 and A003401 apart from terms 1 and 2. (End) REFERENCES George E. Martin: Geometric Constructions. New York: Springer, 1997, p. 140. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (0,0,0,2). FORMULA G.f.: x*(3*x^7 + 2*x^6 + 2*x^5 + 2*x^4 + 6*x^3 + 5*x^2 + 4*x + 3)/(1 - 2*x^4). MATHEMATICA CoefficientList[Series[x(3x^7+2x^6+2x^5+2x^4+6x^3+5x^2+4x+3)/(1-2x^4), {x, 0, 60}], x] (* Harvey P. Dale, Dec 23 2012 *) PROG (PARI) Vec(x*(3*x^7+2*x^6+2*x^5+2*x^4+6*x^3+5*x^2+4*x+3)/(1-2*x^4)+O(x^99)) \\ Charles R Greathouse IV, Oct 12 2012 CROSSREFS Cf. A003401, A007283, A020707, A020714, A051037, A110286. Sequence in context: A026506 A198382 A173946 * A130216 A120162 A002859 Adjacent sequences: A051913 A051914 A051915 * A051917 A051918 A051919 KEYWORD nonn,easy,nice AUTHOR Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Dec 17 1999 EXTENSIONS More terms from James A. Sellers, Dec 18 1999 Offset corrected by Reinhard Zumkeller, Mar 10 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 16:20 EST 2022. Contains 358431 sequences. (Running on oeis4.)