%I #20 Aug 06 2024 22:31:47
%S 1,14,69,224,574,1260,2478,4488,7623,12298,19019,28392,41132,58072,
%T 80172,108528,144381,189126,244321,311696,393162,490820,606970,744120,
%U 904995,1092546,1309959,1560664
%N Partial sums of A051798.
%C Convolution of triangular numbers (A000217) and 11-gonal numbers (A051682). [_Bruno Berselli_, Jul 21 2015]
%D A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
%D Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-16.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F a(n) = C(n+4, 4)*(9n+5)/5.
%F G.f.: (1+8*x)/(1-x)^6.
%t Accumulate[Table[(n+1)(n+2)(n+3)(9n+4)/24,{n,0,40}]] (* _Harvey P. Dale_, Aug 19 2012 *)
%Y Cf. A051798; A000217, A051682.
%Y Cf. A093644((9, 1) Pascal, column m=5).
%Y Cf. A050405.
%K nonn,easy
%O 0,2
%A _Barry E. Williams_, Dec 14 1999