login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051762 Polygon circumscribing constant: decimal expansion of Product_{n=3..infinity} 1/cos(Pi/n). 9
8, 7, 0, 0, 0, 3, 6, 6, 2, 5, 2, 0, 8, 1, 9, 4, 5, 0, 3, 2, 2, 2, 4, 0, 9, 8, 5, 9, 1, 1, 3, 0, 0, 4, 9, 7, 1, 1, 9, 3, 2, 9, 7, 9, 4, 9, 7, 4, 2, 8, 9, 2, 0, 9, 2, 1, 5, 9, 6, 6, 7, 2, 7, 8, 6, 8, 3, 4, 2, 9, 9, 6, 4, 1, 1, 4, 0, 2, 5, 1, 5, 9, 1, 1, 8, 5, 4, 4, 4, 1, 4, 0, 0, 9, 2, 4, 9, 5, 2, 8, 5, 5, 0, 3, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The geometric interpretation is as follows. Begin with a unit circle. Circumscribe an equilateral triangle and then circumscribe a circle. Circumscribe a square and then circumscribe a circle. Circumscribe a regular pentagon and then circumscribe a circle, etc. The circles have radius which converges to this value.

Grimstone corrects an error in other references and gives an approximation for 1/A085365, see there for further information. - M. F. Hasler, May 18 2014

REFERENCES

Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 382.

LINKS

Table of n, a(n) for n=1..105.

M. Chamberland, A. Straub, On Gamma quotients and infinite products, arXiv:1309.3455, Section 4.

Clive J. Grimstone, A product of cosines, Math. Gaz. 64 (428) (1980) 120-121.

A. R. Kitson, The prime analog of the Kepler-Bouwkamp constant, arXiv:math/0608186.

R. J. Mathar, Tightly circumscribed regular polygons, arXiv:1301.6293 [math.MG]

Kival Ngaokrajang, Illustration of polygon inscribing

Eric Weisstein's World of Mathematics, Polygon Circumscribing

Wikipedia, Polygon circumscribing constant

FORMULA

A051762 = 1/A085365.

EXAMPLE

8.700036625208194503222409859113004971193297949742892092159667278683429964114...

MAPLE

evalf(product(sec(Pi/k), k=3..infinity), 103) # Vaclav Kotesovec, Sep 20 2014

MATHEMATICA

(* A check of the calculation can be made by dividing the product into two halves, a = N[Product[1/Cos[Pi/(2 n + 1)], {n, 1, Infinity}], 111], b = N[Product[1/Cos[Pi/(2 n)], {n, 2, Infinity}], 111] and a*b = A051762. - Robert G. Wilson v, Dec 22 2013 *) [This approach turns out to give incorrect numerical results. - M. F. Hasler, Sep 20 2014]

Block[{$MaxExtraPrecision = 1000}, Do[Print[N[1/Exp[Sum[-(2^(2*n)-1)/n * Zeta[2*n]*(Zeta[2*n] - 1 - 1/2^(2*n)), {n, 1, m}]], 110]], {m, 250, 300}]] (* over 100 decimal places are correct, Vaclav Kotesovec, Sep 20 2014 *)

PROG

(PARI) exp(-sumpos(n=3, log(cos(Pi/n)))) \\ Converges very quickly, which is not the case for suminf(...) or prodinf(cos(Pi/n)). - M. F. Hasler, May 18 2014

CROSSREFS

Cf. A085365, A118253, A131671, A211174.

Sequence in context: A112145 A248291 A038284 * A247017 A198112 A213007

Adjacent sequences:  A051759 A051760 A051761 * A051763 A051764 A051765

KEYWORD

nonn,cons

AUTHOR

Robert G. Wilson v, Aug 23 2000

EXTENSIONS

More terms from Eric W. Weisstein, Jun 25 2003

Edited by M. F. Hasler, May 18 2014

Example corrected by Vaclav Kotesovec, Sep 20 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 22 14:10 EST 2014. Contains 252364 sequences.