login
Associated with a chi-inequality greedy algorithm.
2

%I #17 Oct 05 2021 03:33:32

%S 4,10,14,24,30,36,42,48,54,72,80,88,96,120,130,140,150,160,170,180,

%T 190,200,210,246,258,270,282,294,306,350,364,378,392,406,420,472,488,

%U 504,520,536,552,612,630,648,666,684,702,770,790,810,830,850,870,946,968

%N Associated with a chi-inequality greedy algorithm.

%D Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 163-166.

%H S. R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/erdos/convex/convex.html">A Convex Maximization Problem</a> [Broken link]

%H Steven R. Finch, <a href="https://arxiv.org/abs/math/9912035">A convex maximization problem: Discrete case</a>, arXiv:math/9912035 [math.OC], 1999.

%H Steven R. Finch, <a href="https://arxiv.org/abs/math/9912036">A convex maximization problem: Continuous Case</a>, arXiv:math/9912036 [math.OC], 1999.

%H Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/erdos/erdos.html">Erdos's Reciprocal Sum Constants</a> [Broken link]

%H Steven R. Finch, <a href="http://web.archive.org/web/20010620000306/http://www.mathsoft.com/asolve/constant/erdos/erdos.html">Erdos's Reciprocal Sum Constants</a> [From the Wayback machine]

%F a(n) = (n+2) * A014011(n+1) - (n+1) * A014011(n). - _Sean A. Irvine_, Oct 04 2021

%Y Cf. A014011, A051742.

%K nonn

%O 1,1

%A _Steven Finch_, Dec 07 1999