login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051716 Numerators of Bernoulli twin numbers C(n). 23
1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 5, -5, -691, 691, 7, -7, -3617, 3617, 43867, -43867, -174611, 174611, 854513, -854513, -236364091, 236364091, 8553103, -8553103, -23749461029, 23749461029, 8615841276005, -8615841276005, -7709321041217, 7709321041217, 2577687858367 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,11

COMMENTS

The Bernoulli twin numbers C(n) are defined by C(0) = 1, then C(2n) = B(2n)+B(2n-1), C(2n+1) = -B(2n+1)-B(2n), where B() are the Bernoulli numbers A027641/A027642. The definition is due to Paul Curtz.

Negatives of numerators of column 1 of table described in A051714/A051715.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..640

M. Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, J. Integer Sequences, 3 (2000), #00.2.9.

FORMULA

Numerators of differences of the sequence of rational numbers 0 followed by A164555/A027642. - Paul Curtz, Jan 29 2017

The e.g.f. of the rationals a(n)/A051717(n) is -(1/x + x^2/2 + x/(1 - exp(x)) + dilog(exp(-x))), (with dilog(x) = polylog(2, 1-x)). From integrating the e.g.f. of the z-sequence  (exp(x) - (1+x))/(exp(x) -1)^2 for the Bernoulli polynomials of the second kind (A290317 / A290318). - Wolfdieter Lang, Aug 07 2017

EXAMPLE

The C(n) sequence is 1, -1/2, -1/3, -1/6, -1/30, 1/30, 1/42, -1/42, -1/30, 1/30, 5/66, -5/66, -691/2730, 691/2730, 7/6, -7/6, ...

MAPLE

C:=proc(n) if n=0 then RETURN(1); fi; if n mod 2 = 0 then RETURN(bernoulli(n)+bernoulli(n-1)); else RETURN(-bernoulli(n)-bernoulli(n-1)); fi; end;

MATHEMATICA

c[0] = 1; c[n_?EvenQ] := BernoulliB[n] + BernoulliB[n-1]; c[n_?OddQ] := -BernoulliB[n] - BernoulliB[n-1]; Table[ Numerator[c[n]], {n, 0, 34}] (* Jean-François Alcover, Dec 19 2011 *)

PROG

(PARI) a(n) = if (n==0, 1, nu = numerator(bernfrac(n)+bernfrac(n-1)); if (n%2, -nu, nu)); \\ Michel Marcus, Jan 29 2017

CROSSREFS

Cf. A051717, A000367, A129825, A129826, A129724, A051714, A051715, A164555.

Sequence in context: A055928 A213145 A195567 * A226260 A102060 A102058

Adjacent sequences:  A051713 A051714 A051715 * A051717 A051718 A051719

KEYWORD

sign,easy,nice,frac,changed

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from James A. Sellers, Dec 08 1999

Edited by N. J. A. Sloane, May 25 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 19 21:13 EDT 2017. Contains 290821 sequences.