%I #13 May 03 2015 11:00:07
%S 1,60,60,70,84,504,120,990,165,572,1092,2730,280,4080,2448,1938,855,
%T 7980,1540,10626,3036,4600,7800,17550,819,21924,12180,8990,7440,32736,
%U 5984,39270,5355,15540,25308,54834,4940,63960,34440
%N Denominator of b(n)-b(n+1), where b(n) = n/((n+1)(n+2)) = A026741/A045896.
%H M. Kaneko, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL3/KANEKO/AT-kaneko.html">The Akiyama-Tanigawa algorithm for Bernoulli numbers</a>, J. Integer Sequences, 3 (2000), #00.2.9.
%e 0, 1/60, 1/60, 1/70, 1/84, 5/504, 1/120, 7/990, 1/165, 3/572,...
%t Denominator[#[[1]]-#[[2]]&/@(Partition[#[[1]]/(#[[2]]#[[3]])&/@Partition[ Range[50],3,1],2,1])] (* _Harvey P. Dale_, Nov 15 2014 *)
%Y Cf. A051712. Row 3 of table in A051714/A051715.
%K nonn,frac,easy
%O 1,2
%A _N. J. A. Sloane_