|
|
A051709
|
|
a(n) = sigma(n) + phi(n) - 2n.
|
|
17
|
|
|
0, 0, 0, 1, 0, 2, 0, 3, 1, 2, 0, 8, 0, 2, 2, 7, 0, 9, 0, 10, 2, 2, 0, 20, 1, 2, 4, 12, 0, 20, 0, 15, 2, 2, 2, 31, 0, 2, 2, 26, 0, 24, 0, 16, 12, 2, 0, 44, 1, 13, 2, 18, 0, 30, 2, 32, 2, 2, 0, 64, 0, 2, 14, 31, 2, 32, 0, 22, 2, 28, 0, 75, 0, 2, 14, 24, 2, 36, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,6
|
|
COMMENTS
|
Sigma is the sum of divisors (A000203), and phi is the Euler totient function (A000010). - Michael B. Porter, Jul 05 2013
Because sigma and phi are multiplicative functions, it is easy to show that (1) if a(n)=0, then n is prime or 1 and (2) if a(n)=2, then n is the product of two distinct prime numbers. Note that a(n) is the n-th term of the Dirichlet series whose generating function is given below. Using the generating function, it is theoretically possible to compute a(n). Hence a(n)=0 could be used as a primality test and a(n)=2 could be used as a test for membership in P2 (A006881). - T. D. Noe, Aug 01 2002
It appears that a(n) - A002033(n) = zeta(s-1) * (zeta(s) - 2 + 1/zeta(s)) + 1/(zeta(s)-2). - Eric Desbiaux, Jul 04 2013
a(n) = 1 if and only if n = prime(k)^2 (n is in A001248). It seems that a(n) = k has only finitely many solutions for k >= 3. - Jianing Song, Jun 27 2021
|
|
LINKS
|
Antti Karttunen, Table of n, a(n) for n = 1..65537 (First 1000 terms from T. D. Noe.)
Carlos Rivera, Puzzle 76. z(n)=sigma(n) + phi(n) - 2n, The Prime Puzzles and Problems Connection.
|
|
FORMULA
|
Dirichlet g.f.: zeta(s-1) * (zeta(s) - 2 + 1/zeta(s)). - T. D. Noe, Aug 01 2002
From Antti Karttunen, Mar 02 2018: (Start)
a(n) = A001065(n) - A051953(n). [Difference between the sum of proper divisors of n and their Moebius-transform.]
a(n) = -Sum_{d|n, d<n} A008683(n/d)*A001065(d).
(End)
|
|
EXAMPLE
|
a(5) = sigma(5) + phi(5) - 2*5 = 6 + 4 - 10 = 0.
|
|
MATHEMATICA
|
Table[DivisorSigma[1, n]+EulerPhi[n]-2n, {n, 80}] (* Harvey P. Dale, Apr 08 2015 *)
|
|
PROG
|
(PARI) a(n)=sigma(n)+eulerphi(n)-2*n \\ Charles R Greathouse IV, Jul 05 2013
(PARI) A051709(n) = -sumdiv(n, d, (d<n)*moebius(n/d)*(sigma(d)-d)); \\ Antti Karttunen, Mar 02 2018
|
|
CROSSREFS
|
Cf. A000010, A000203, A001065, A001248, A005843, A006881, A051612, A051953, A065387, A072780, A228498 (= a(n^2)), A297159, A324048, A344994, A344995, A344996, A345048, A345054.
Cf. A278373 (range of this sequence), A056996 (numbers not present).
Cf. also A344753, A345001 (analogous sequences).
Sequence in context: A197117 A343879 A275387 * A318326 A329646 A293813
Adjacent sequences: A051706 A051707 A051708 * A051710 A051711 A051712
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Jud McCranie and Carlos Rivera
|
|
STATUS
|
approved
|
|
|
|