This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A051696 Greatest common divisor of n! and n^n. 6
 1, 2, 3, 8, 5, 144, 7, 128, 81, 6400, 11, 248832, 13, 100352, 91125, 32768, 17, 429981696, 19, 163840000, 6751269, 63438848, 23, 247669456896, 15625, 1417674752, 1594323, 80564191232, 29, 25076532510720000000, 31, 2147483648 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) also equals the smallest positive integer such that lcm(a(1), a(2), a(3), ... a(n)) = n!, for every positive integer n. - Leroy Quet, Apr 28 2007 LINKS T. D. Noe, Table of n, a(n) for n = 1..500 FORMULA a(n) = Product_{p|n} p^(sum{k >= 1} floor(n/p^k)), where the product runs over the distinct primes p that divide n. - Leroy Quet, Apr 28 2007 a(n) = n*A062763(n). - R. J. Mathar, Mar 11 2017 a(n) = (numerator of B(n, 1/n))/n^(n - 1), where B(.,.) is the Euler beta function. - Arkadiusz Wesolowski, Nov 22 2017 a(p) = p for p prime. - Peter Luschny, Nov 29 2017 EXAMPLE a(4) = 8 since 4! = 24 and 4^4 = 256 and gcd(24, 256) = 8. lcm(a(1), a(2), a(3), a(4), a(5), a(6)) = lcm(1, 2, 3, 8, 5, 144) = 6! = 720. (See comment.) MAPLE seq(igcd(n!, n^n), n=1..32); # Peter Luschny, Nov 29 2017 MATHEMATICA Table[GCD[n!, n^n], {n, 40}] (* Harvey P. Dale, Oct 20 2011 *) Table[Numerator@Beta[n, 1/n]/n^(n - 1), {n, 32}] (* Arkadiusz Wesolowski, Nov 22 2017 *) CROSSREFS Sequence in context: A170911 A067911 A243103 * A066570 A073656 A047930 Adjacent sequences:  A051693 A051694 A051695 * A051697 A051698 A051699 KEYWORD nonn,easy,nice AUTHOR EXTENSIONS More terms from James A. Sellers, Dec 08 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 06:32 EDT 2019. Contains 323478 sequences. (Running on oeis4.)