login
Number of "labeled" cyclic subgroups of alternating group A_n.
7

%I #29 Jun 04 2021 09:41:18

%S 1,1,2,8,32,167,947,6974,53426,454682,4303532,50366912,553031624,

%T 6760260236,90333982832,1369522152392,20986020606632,350528387240264,

%U 5751957395258096,111685506968916032,2139383543480892032,41770889787378732752,869742098042083451264

%N Number of "labeled" cyclic subgroups of alternating group A_n.

%H Alois P. Heinz, <a href="/A051636/b051636.txt">Table of n, a(n) for n = 1..140</a>

%H L. Naughton and G. Pfeiffer, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Naughton/naughton2.html">Integer Sequences Realized by the Subgroup Pattern of the Symmetric Group</a>, J. Int. Seq. 16 (2013) #13.5.8.

%F a(n) = 1/2*Sum_{pi} (1+(-1)^(k_2+k_4+...)) * n!/(k_1!*1^k_1*k_2!*2^k_2*...*k_n!*n^k_n*phi(lcm{i:k_i != 0})), where pi runs through all partitions k_1+2*k_2+...+n*k_n=n and phi is Euler's function.

%p b:= proc(n, i, m, t) option remember; `if`(n=0, (1+(-1)^t)/numtheory

%p [phi](m), add(1/j!/i^j*b(n-i*j, i-1, ilcm(m, `if`(j=0, 1, i)),

%p irem(t+j*irem(i+1, 2), 2)), j=`if`(i=1, n, 0..n/i)))

%p end:

%p a:= n-> n!*b(n$2, 1, 0)/2:

%p seq(a(n), n=1..25); # _Alois P. Heinz_, Jul 03 2018

%t f[list_] :=Total[list]!/(Apply[Times, list]*Apply[Times, Map[Length, Split[list]]!])/EulerPhi[Apply[LCM, list]]; Table[Total[Map[f,

%t Select[IntegerPartitions[n],EvenQ[Length[Select[#, EvenQ[#] &]]] &]]], {n, 1, 21}] (* _Geoffrey Critzer_, Oct 03 2015 *)

%t b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, (1 + (-1)^t)/

%t EulerPhi[m], If[i == 0, 0, Sum[1/j!/i^j*b[n - i*j, i - 1, LCM[m,

%t If[j == 0, 1, i]], Mod[t+j*Mod[i+1, 2], 2]], {j, Range[0, n/i]}]]];

%t a[n_] := n! b[n, n, 1, 0]/2;

%t Array[a, 25] (* _Jean-François Alcover_, Jun 04 2021, after _Alois P. Heinz_ *)

%o (PARI) \\ permcount is number of permutations of given type.

%o permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}

%o a(n)={my(s=0); forpart(p=n, if(sum(i=1, #p, p[i]-1)%2==0, s+=permcount(p) / eulerphi(lcm(Vec(p))))); s} \\ _Andrew Howroyd_, Jul 03 2018

%Y Row sums of A303728.

%Y Cf. A000010, A051625.

%K easy,nonn

%O 1,3

%A _Vladeta Jovovic_