login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051613 a(n) = partitions of n into powers of distinct primes (1 not considered a power). 11
1, 0, 1, 1, 1, 2, 0, 3, 2, 3, 2, 4, 3, 4, 4, 4, 8, 4, 8, 6, 9, 8, 10, 10, 13, 12, 13, 16, 16, 19, 17, 21, 23, 23, 25, 29, 31, 31, 31, 37, 40, 42, 44, 48, 49, 54, 55, 64, 67, 68, 70, 77, 84, 90, 92, 99, 102, 108, 115, 127, 133, 135, 138, 150, 165, 171, 183, 186, 198, 201, 220 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

REFERENCES

J. Bamberg, G. Cairns and D. Kilminster, The crystallographic restriction, permutations and Goldbach's conjecture, Amer. Math. Monthly, 110 (March 2003), 202-209.

LINKS

T. D. Noe, Table of n, a(n) for n=0..1000

FORMULA

a(n) = number of m such that A008475(m) = n.

G.f.: Prod(p prime, 1 + Sum(k >= 1, x^(p^k))).

EXAMPLE

a(16) = 8 because we can write 16 = 2^4 = 3+13 = 5+11 = 3^2+7 = 2+3+11 = 2+3^2+5 = 2^3+3+5 = 2^2+5+7.

MAPLE

b:= proc(n, i) option remember; local p;

      p:= `if`(i<1, 1, ithprime(i));

      `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+

      add(b(n-p^j, i-1), j=1..ilog[p](n))))

    end:

a:= n-> b(n, numtheory[pi](n)):

seq(a(n), n=0..100);  # Alois P. Heinz, Feb 15 2013

MATHEMATICA

max = 70; f[x_] := Product[ 1 + Sum[x^(Prime[n]^k), {k, 1, If[n > 4, 1, 6]}], {n, 1, PrimePi[max]}]; CoefficientList[ Series[f[x], {x, 0, max}] , x](* Jean-Fran├žois Alcover, Sep 12 2012 *)

CROSSREFS

Cf. A023894, A009490, A054685, A008475.

Cf. A106245.

Sequence in context: A180196 A132623 A243403 * A173291 A077961 A077962

Adjacent sequences:  A051610 A051611 A051612 * A051614 A051615 A051616

KEYWORD

nonn,nice,easy

AUTHOR

Vladeta Jovovic

EXTENSIONS

Better description from David W. Wilson, Apr 19, 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 22 09:14 EST 2014. Contains 252336 sequences.