login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051564 Second unsigned column of triangle A051523. 17
0, 1, 21, 362, 6026, 101524, 1763100, 31813200, 598482000, 11752855200, 240947474400, 5154170774400, 114942011990400, 2669517204076800, 64496340380102400, 1619153396908185600, 42188624389562112000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

From Johannes W. Meijer, Oct 20 2009: (Start)

The asymptotic expansion of the higher order exponential integral E(x,m=2,n=10) ~ exp(-x)/x^2*(1 - 21/x + 362/x^2 - 6026/x^3 + 101524/x^4 - 1763100/x^5 + 31813200/x^6 - ...) leads to the sequence given above. See A163931 and A028421 for more information.

(End)

REFERENCES

Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051523.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..440

FORMULA

a(n) = A051523(n, 2)*(-1)^(n-1).

E.g.f.: -log(1-x)/(1-x)^10.

a(n) = n!*Sum_{k=0..n-1}((-1)^k*binomial(-10,k)/(n-k)), for n>=1. - Milan Janjic, Dec 14 2008

a(n) = n!*[9]h(n), where [k]h(n) denotes the k-th successive summation of the harmonic numbers from 0 to n. - Gary Detlefs Jan 04 2011

MATHEMATICA

f[n_] := n!*Sum[(-1)^k*Binomial[-10, k]/(n - k), {k, 0, n - 1}]; Array[f, 17, 0]

Range[0, 16]! CoefficientList[ Series[-Log[(1 - x)]/(1 - x)^10, {x, 0, 16}], x]

(* Or, using elementary symmetric functions: *)

f[k_] := k + 9; t[n_] := Table[f[k], {k, 1, n}]

a[n_] := SymmetricPolynomial[n - 1, t[n]]

Table[a[n], {n, 1, 16}]

(* Clark Kimberling, Dec 29 2011 *)

CROSSREFS

Cf. A049398 (first unsigned column).

Related to n!*the k-th successive summation of the harmonic numbers: k=0..A000254, k=1..A001705, k=2..A001711, k=3..A001716, k=4..A001721, k=5..A051524, k=6..A051545, k=7..A051560, k=8..A051562, k=9..A051564. - Gary Detlefs Jan 04 2011

Sequence in context: A192093 A006105 A167032 * A108495 A178351 A152182

Adjacent sequences:  A051561 A051562 A051563 * A051565 A051566 A051567

KEYWORD

easy,nonn

AUTHOR

Wolfdieter Lang

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 24 17:16 EST 2018. Contains 299624 sequences. (Running on oeis4.)