login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051563 Third unsigned column of triangle A051380. 1
0, 0, 1, 30, 659, 13145, 255424, 4985316, 99236556, 2030997852, 42924478536, 938984014584, 21283428847680, 500043968498880, 12176238355176960, 307176581692097280, 8023946251816984320, 216880826334455750400 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

From Johannes W. Meijer, Oct 20 2009: (Start)

The asymptotic expansion of the higher order exponential integral E(x,m=3,n=9) ~ exp(-x)/x^3*(1 - 30/x + 659/x^2 - 13145/x^3 + 255424/x^4 + ...) leads to the sequence given above. See A163931 and A163932 for more information.

(End)

REFERENCES

Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051380.

LINKS

Table of n, a(n) for n=0..17.

FORMULA

a(n) = A051380(n, 2)*(-1)^n; e.g.f.: ((log(1-x))^2)/(2*(1-x)^9).

If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n) = |f(n,2,9)|, for n>=1. - Milan Janjic, Dec 21 2008

CROSSREFS

Cf. A049389 (m=0), A051562 (m=1) unsigned columns.

Sequence in context: A264849 A111779 A075473 * A152499 A027475 A180801

Adjacent sequences:  A051560 A051561 A051562 * A051564 A051565 A051566

KEYWORD

easy,nonn

AUTHOR

Wolfdieter Lang

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 10:26 EST 2020. Contains 331105 sequences. (Running on oeis4.)