login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051561 Third unsigned column of triangle A051379. 1
0, 0, 1, 27, 539, 9850, 176554, 3197348, 59354028, 1137868848, 22614500016, 466814750688, 10015620672672, 223359393479040, 5175622796192640, 124533006364442880, 3109120944743427840, 80473740053567016960 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

From Johannes W. Meijer, Oct 20 2009: (Start)

The asymptotic expansion of the higher order exponential integral E(x,m=3,n=8) ~ exp(-x)/x^3*(1 - 27/x + 539/x^2 - 9850/x^3 + 176554/x^4 + ...) leads to the sequence given above. See A163931 and A163932 for more information.

(End)

REFERENCES

Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051379.

LINKS

Table of n, a(n) for n=0..17.

FORMULA

a(n) = A051379(n, 2)*(-1)^n; e.g.f.: ((log(1-x))^2)/(2*(1-x)^8).

If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n) = |f(n,2,8)|, for n>=1. - Milan Janjic, Dec 21 2008

MATHEMATICA

With[{nn=20}, CoefficientList[Series[(Log[1-x])^2/(2(1-x)^8), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jul 10 2013 *)

CROSSREFS

Cf. A049388 (m=0), A051560 (m=1) unsigned columns.

Sequence in context: A215039 A014928 A163199 * A163197 A267544 A061914

Adjacent sequences:  A051558 A051559 A051560 * A051562 A051563 A051564

KEYWORD

easy,nonn

AUTHOR

Wolfdieter Lang

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 19:36 EST 2020. Contains 331175 sequences. (Running on oeis4.)