login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051525 Third unsigned column of triangle A051338. 1
0, 0, 1, 21, 335, 5000, 74524, 1139292, 18083484, 299705400, 5198985576, 94461323616, 1797180658272, 35776357096896, 744402741205824, 16169795109262080, 366214212167489280, 8636605663418933760 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

From Johannes W. Meijer, Oct 20 2009: (Start)

The asymptotic expansion of the higher order exponential integral E(x,m=3,n=6) ~ exp(-x)/x^3*(1 - 21/x + 335/x^2 - 5000/x^3 + 74524/x^4 - 1139292/x^5 + ...) leads to the sequence given above. See A163931 and A163932 for more information.

(End)

REFERENCES

Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051338.

LINKS

Table of n, a(n) for n=0..17.

FORMULA

a(n) = A051338(n, 2)*(-1)^n; e.g.f.: (log(1-x))^2/(2*(1-x)^6).

If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n) = |f(n,2,6)|, for n>=1. - Milan Janjic, Dec 21 2008

CROSSREFS

Cf. A001725 (m=0), A051524 (m=1) unsigned columns.

Sequence in context: A016191 A297336 A095905 * A107396 A036224 A113895

Adjacent sequences:  A051522 A051523 A051524 * A051526 A051527 A051528

KEYWORD

easy,nonn

AUTHOR

Wolfdieter Lang

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 19:45 EST 2020. Contains 331175 sequences. (Running on oeis4.)