login
A051472
a(n) = A028317(n)/2.
7
3, 3, 6, 4, 4, 19, 5, 18, 18, 5, 23, 65, 23, 6, 6, 102, 189, 231, 189, 102, 7, 41, 291, 420, 420, 291, 41, 7, 48, 711, 840, 711, 48, 8, 605, 1551, 1551, 605, 8, 281, 3102, 281, 9, 72, 2574, 4433, 4433, 2574, 72, 9, 81, 1456, 7007, 11583, 7007, 1456, 81, 10, 10, 588
OFFSET
0,1
LINKS
EXAMPLE
Even elements of (1/2)*A028317 as an irregular triangle:
3, 3;
6;
4, 4;
19;
5, 18, 18, 5;
23, 65, 23;
6, 6;
...
MATHEMATICA
A028313[n_, k_]:= If[n<2, 1, Binomial[n, k] +3*Binomial[n-2, k-1]];
f= Table[A028313[n, k], {n, 0, 100}, {k, 0, n}]//Flatten;
b[n_]:= DeleteCases[{f[[n+1]]}, _?OddQ]/2;
Table[b[n], {n, 0, 200}]//Flatten (* G. C. Greubel, Jan 06 2024 *)
PROG
(Magma)
A028313:= func< n, k | n le 1 select 1 else Binomial(n, k) +3*Binomial(n-2, k-1) >;
a:=[A028313(n, k): k in [0..n], n in [0..100]];
[a[n]/2: n in [1..200] | (a[n] mod 2) eq 0]; // G. C. Greubel, Jan 06 2024
(SageMath)
def A028313(n, k): return 1 if n<2 else binomial(n, k) + 3*binomial(n-2, k-1)
a=flatten([[A028313(n, k) for k in range(n+1)] for n in range(101)])
[a[n]/2 for n in (0..200) if a[n]%2==0] # G. C. Greubel, Jan 06 2024
CROSSREFS
Sequence in context: A086492 A372036 A143305 * A257957 A369501 A324000
KEYWORD
nonn,tabf
STATUS
approved