login
A051449
Number of fibered rational knots with n crossings.
3
1, 1, 1, 2, 3, 4, 7, 10, 16, 25, 40, 62, 101, 159, 257, 410, 663, 1062, 1719, 2764, 4472, 7209, 11664, 18828, 30465, 49221, 79641, 128746, 208315, 336872, 545071, 881638, 1426520, 2307665, 3733880, 6040746, 9774133, 15813587, 25586921, 41398418
OFFSET
3,4
FORMULA
G.f.: (x^2/2)*((-x-x^2)/(x^4+2x^3+x^2-1) + (-x-x^2)/(x^4+x^2-1)).
G.f.: -x^3*(x^3+x-1)*(1+x)^2 / ( (1+x+x^2)*(x^2+x-1)*(x^4+x^2-1) ).
EXAMPLE
a(7)=3 because there are 3 fibered rational knots with 7 crossings: 7_1, 7_6 and 7_7 (in Alexander-Briggs notation).
MATHEMATICA
f[x_] = -(x+1)^2*(x^3+x-1) / ((x^2+x-1)*(x^2+x+1)*(x^4+x^2-1)); CoefficientList[ Series[f[x], {x, 0, 39}], x]; Table[a[n], {n, 0, 20}](* Jean-François Alcover, Nov 21 2011 *)
LinearRecurrence[{0, 2, 2, 1, -2, -2, -2, -1}, {1, 1, 1, 2, 3, 4, 7, 10}, 40] (* Harvey P. Dale, Dec 27 2015 *)
CROSSREFS
Sequence in context: A202411 A293161 A235648 * A018143 A373783 A281839
KEYWORD
easy,nonn,nice
AUTHOR
Alexander Stoimenow (stoimeno(AT)math.toronto.edu)
EXTENSIONS
More terms from James A. Sellers
STATUS
approved