|
|
A051431
|
|
a(n) = (n+10)!/10!.
|
|
12
|
|
|
1, 11, 132, 1716, 24024, 360360, 5765760, 98017920, 1764322560, 33522128640, 670442572800, 14079294028800, 309744468633600, 7124122778572800, 170978946685747200, 4274473667143680000, 111136315345735680000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The p=10 member of the p-family of sequences {(n+p-1)!/p!}, n >= 1.
The asymptotic expansion of the higher-order exponential integral E(x,m=1,n=11) ~ exp(-x)/x*(1 - 11/x + 132/x^2 - 1716/x^3 + 24024/x^4 - 360360/x^5 + 5765760/x^6 - ...) leads to the sequence given above. See A163931 and A130534 for more information. - Johannes W. Meijer, Oct 20 2009
a(n) = A173333(n+10,10). - Reinhard Zumkeller, Feb 19 2010
a(n) = A245334(n+10,n) / 11. - Reinhard Zumkeller, Aug 31 2014
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..300
|
|
FORMULA
|
a(n) = (n+10)!/10!
E.g.f.: 1/(1-x)^11.
|
|
PROG
|
(MAGMA) [Factorial(n+10)/3628800: n in [0..25]]; // Vincenzo Librandi, Jul 20 2011
(Haskell)
a051431 = (flip div 3628800) . a000142 . (+ 10)
-- Reinhard Zumkeller, Aug 31 2014
|
|
CROSSREFS
|
Cf. A000142, A001710, A001715, A001720, A001725, A001730, A049388, A049389, A049398.
Cf. A245334.
Sequence in context: A105280 A196731 A289415 * A014994 A015609 A250460
Adjacent sequences: A051428 A051429 A051430 * A051432 A051433 A051434
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Wolfdieter Lang
|
|
STATUS
|
approved
|
|
|
|