login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051362 Primes remaining prime if any digit is deleted (zeros allowed). 19
23, 37, 53, 73, 113, 131, 137, 173, 179, 197, 311, 317, 431, 617, 719, 1013, 1031, 1097, 1499, 1997, 2239, 2293, 3137, 4019, 4919, 6173, 7019, 7433, 9677, 10193, 10613, 11093, 19973, 23833, 26833, 30011, 37019, 40013, 47933, 73331, 74177 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

These might be called "super-prime numbers". - Jaime Gutierrez (jgutierrez(AT)matematicas.net), Sep 27 2007

A proper subset of A034895. - Robert G. Wilson v, Oct 12 2014

LINKS

T. D. Noe and Giovanni Resta, Table of n, a(n) for n = 1..201 (terms < 10^13, first 100 terms from T. D. Noe)

StackExchange, Deleting any digit yields a prime

MAPLE

P:=proc(q) local a, b, i, ok, n; for n from 1 to q do a:=ithprime(n); b:=0;

ok:=1; while a>0 do b:=b+1; a:=trunc(a/10); od; a:=ithprime(n);

for i from 0 to b-1 do if not isprime(trunc(a/10^(i+1))*10^i+(a mod 10^i))

then ok:=0; break; fi; od; if ok=1 then print(ithprime(n)); fi;

od; end: P(10^6); # Paolo P. Lava, Oct 25 2013

MATHEMATICA

rpQ[n_]:=Module[{idn=IntegerDigits[n]}, And@@PrimeQ[FromDigits/@ Subsets[ IntegerDigits[ n], {Length[idn]-1}]]]; Select[Prime[Range[40000]], rpQ]

PROG

(Haskell)

import Data.List (inits, tails)

a051362 n = a051362_list !! (n-1)

a051362_list = filter p $ drop 4 a000040_list where

   p x = all (== 1) $ map (a010051 . read) $

             zipWith (++) (inits $ show x) (tail $ tails $ show x)

-- Reinhard Zumkeller, Dec 17 2011, Aug 24 2011

(PARI) is(n)=my(v=Vec(Str(n)), k); for(i=1, #v, k=eval(concat(vecextract(v, 2^#v-1-2^(i-1)))); if(!isprime(k), return(0))); isprime(n) \\ Charles R Greathouse IV, Oct 05 2011

(Sage)

def is_A051362(n):

    prime = is_prime(n)

    if prime:

        L = ZZ(n).digits(10)

        for k in range(len(L)):

            K = L[:]; del K[k]

            prime = is_prime(ZZ(K, base=10))

            if not prime: break

    return prime

A051362_list = lambda n: filter(is_A051362, range(n))

A051362_list(77777) # Peter Luschny, Jul 17 2014

CROSSREFS

Cf. A034302, A010051, A000040, A034895.

Sequence in context: A063643 A057876 A244282 * A034302 A057878 A019549

Adjacent sequences:  A051359 A051360 A051361 * A051363 A051364 A051365

KEYWORD

nonn,base,nice

AUTHOR

Harvey P. Dale, May 31 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 15:05 EST 2016. Contains 278750 sequences.