This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A051273 Expansion of q^(-1/3) * b(q) * c(q) / a(q)^2 in powers of q where a(), b(), c() are cubic AGM theta functions. 4
 3, -42, 393, -3240, 24999, -184740, 1325679, -9312408, 64364025, -439225086, 2966629452, -19868187384, 132119675241, -873278632080, 5742216378024, -37587341460600, 245063740036086, -1592173816624290, 10311978807488160 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882). Coefficients in a certain q-series associated with a failed attempt to explain a mysterious entry in a Ramanujan notebook. REFERENCES B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 179, Eq. 13.23. LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..1250 FORMULA Expansion of 3*(eta(q)*eta(q^3))^2/(theta[A_2](q)^2*q^(1/3)) in powers of q. a(n) ~ (-1)^n * c * n * exp(Pi*n/sqrt(3)), where c = 3 * A258942^2 = 192 * exp(Pi/(3*sqrt(3))) * Pi^5 / Gamma(1/6)^6 = 3.6159115405362166049256277... . - Vaclav Kotesovec, Nov 07 2015, updated Nov 14 2015 EXAMPLE G.f. = 3 - 42*x + 393*x^2 - 3240*x^3 + 24999*x^4 - 184740*x^5 + ... G.f. = 3*q - 42*q^4 + 393*q^7 - 3240*q^10 + 24999*x^13 - 184740*q^16 + ... MATHEMATICA a[0] = 3; a[n_] := Module[{A = x*O[x]^n}, SeriesCoefficient[3*(QPochhammer[ x + A]*(QPochhammer[x^3 + A]^2/(QPochhammer[x + A]^3 + 9*x * QPochhammer[ x^9 + A]^3)))^2, n]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 06 2015, adapted from PARI *) CoefficientList[Series[3 * (QPochhammer[x, x] * QPochhammer[x^3, x^3]^2 / (QPochhammer[x, x]^3 + 9*x*QPochhammer[x^9, x^9]^3))^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Nov 07 2015 *) PROG (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 3 * (eta(x + A) * eta(x^3 + A)^2 / (eta(x + A)^3 + 9 * x * eta(x^9 + A)^3))^2, n))}; /* Michael Somos, Aug 07 2006 */ CROSSREFS Cf. A004016, A058092, A258941, A258942. Sequence in context: A322893 A114943 A119577 * A160873 A084512 A084522 Adjacent sequences:  A051270 A051271 A051272 * A051274 A051275 A051276 KEYWORD sign AUTHOR EXTENSIONS Corrected and extended by Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 15 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 14:52 EDT 2019. Contains 324213 sequences. (Running on oeis4.)