%I #22 Feb 16 2025 08:32:41
%S 1023456798,1023456897,1023456978,1023456987,1023457698,1023457896,
%T 1023457968,1023457986,1023458697,1023458796,1023458967,1023458976,
%U 1023459678,1023459687,1023459768,1023459786,1023459867,1023459876
%N Numbers that are 1-persistent but not 2-persistent.
%C A number n is k-persistent iff all of {n, 2n,..., kn} are pandigital (in the sense of A171102).
%H Hans Havermann, <a href="/A051264/b051264.txt">Table of n, a(n) for n = 1..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PersistentNumber.html">Persistent Number</a>
%F A051264 = A171102 \ A051018. - M. F. Hasler, Jan 09 2012
%Y Cf. A171102 (1-persistent, i.e. pandigital numbers), A204047 (smallest n-persistent), A051018 (2-persistent), A051019 (3-persistent), A051020 (4-persistent), A204096 (5-persistent), A204097 (6-persistent).
%K nonn,base,changed
%O 1,1
%A _Eric W. Weisstein_
%E Definition corrected by _Franklin T. Adams-Watters_, Jan 09 2012