%I #95 Sep 11 2024 22:47:40
%S 2,11,1361,2521008887,16022236204009818131831320183,
%T 4113101149215104800030529537915953170486139623539759933135949994882770404074832568499
%N Mills primes.
%C Mills showed that there is a number A > 1 but not an integer, such that floor( A^(3^n) ) is a prime for all n = 1, 2, 3, ... A is approximately 1.306377883863... (see A051021).
%C a(1) = 2 and (for n > 1) a(n) is least prime > a(n-1)^3. - _Jonathan Vos Post_, May 05 2006, corrected by _M. F. Hasler_, Sep 11 2024
%C The name refers to the American mathematician William Harold Mills (1921-2007). - _Amiram Eldar_, Jun 23 2021
%D Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 8.
%H Robert G. Wilson v, <a href="/A051254/b051254.txt">Table of n, a(n) for n = 1..8</a>
%H Chris K. Caldwell, <a href="http://www.utm.edu/research/primes/notes/proofs/A3n.html">Mills' Theorem - a generalization</a>.
%H Chris K. Caldwell and Yuanyou Chen, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Caldwell/caldwell78.html">Determining Mills' Constant and a Note on Honaker's Problem</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.1.
%H Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/mills/mills.html">Mills' Constant</a>. [Broken link]
%H Steven R. Finch, <a href="http://web.archive.org/web/20010603070928/http://www.mathsoft.com/asolve/constant/mills/mills.html">Mills' Constant</a>. [From the Wayback machine]
%H Dylan Fridman, Juli Garbulsky, Bruno Glecer, James Grime and Massi Tron Florentin, <a href="https://doi.org/10.1080/00029890.2019.1530554">A Prime-Representing Constant</a>, Amer. Math. Monthly, Vol. 126, No. 1 (2019), pp. 72-73; <a href="https://www.researchgate.net/publication/330746181_A_Prime-Representing_Constant">ResearchGate link</a>, <a href="https://arxiv.org/abs/2010.15882">arXiv preprint</a>, arXiv:2010.15882 [math.NT], 2020.
%H James Grime and Brady Haran, <a href="https://www.youtube.com/watch?v=6ltrPVPEwfo">Awesome Prime Number Constant</a>, Numberphile video, 2013.
%H Brian Hayes, <a href="http://bit-player.org/2015/pumping-the-primes">Pumping the Primes</a>, bit-player, Aug 19 2015.
%H Ernest G. Hibbs, <a href="https://www.proquest.com/openview/4012f0286b785cd732c78eb0fc6fce80">Component Interactions of the Prime Numbers</a>, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
%H William H. Mills, <a href="http://dx.doi.org/10.1090/S0002-9904-1947-08849-2">A prime-representing function</a>, Bull. Amer. Math. Soc., Vol. 53, No. 6 (1947), p. 604; <a href="https://doi.org/10.1090/S0002-9904-1947-08944-8">Errata</a>, ibid., Vol. 53, No 12 (1947), p. 1196.
%H Simon Plouffe, <a href="https://arxiv.org/abs/2002.12137">The calculation of p(n) and pi(n)</a>, arXiv:2002.12137 [math.NT], 2020.
%H László Tóth, <a href="https://arxiv.org/abs/1801.08014">A Variation on Mills-Like Prime-Representing Functions</a>, arXiv:1801.08014 [math.NT], 2018.
%H Juan L. Varona, <a href="https://arxiv.org/abs/2012.11750">A Couple of Transcendental Prime-Representing Constants</a>, arXiv:2012.11750 [math.NT], 2020.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MillsPrime.html">Mills' Prime</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeFormulas.html">Prime Formulas</a>.
%H Eric W. Weisstein, <a href="/A051254/a051254.txt">Table of n, a(n) for n = 1..13</a>.
%F a(1) = 2; a(n) is least prime > a(n-1)^3. - _Jonathan Vos Post_, May 05 2006
%e a(3) = 1361 = 11^3 + 30 = a(2)^3 + 30 and there is no smaller k such that a(2)^3 + k is prime. - _Jonathan Vos Post_, May 05 2006
%p floor(A^(3^n), n=1..10); # A is Mills's constant: 1.306377883863080690468614492602605712916784585156713644368053759966434.. (A051021).
%t p = 1; Table[p = NextPrime[p^3], {6}] (* _T. D. Noe_, Sep 24 2008 *)
%t NestList[NextPrime[#^3] &, 2, 5] (* _Harvey P. Dale_, Feb 28 2012 *)
%o (PARI) a(n)=if(n==1, 2, nextprime(a(n-1)^3)) \\ _Charles R Greathouse IV_, Jun 23 2017
%o (PARI) apply( {A051254(n, p=2)=while(n--, p=nextprime(p^3));p}, [1..6]) \\ _M. F. Hasler_, Sep 11 2024
%Y Cf. A001358, A055496, A076656, A006992, A005384, A005385, A118908, A118909, A118910, A118911, A118912, A118913.
%Y Cf. A224845 (integer lengths of Mills primes).
%Y Cf. A108739 (sequence of offsets b_n associated with Mills primes).
%Y Cf. A051021 (decimal expansion of Mills constant).
%K nonn,nice
%O 1,1
%A _Simon Plouffe_.
%E Edited by _N. J. A. Sloane_, May 05 2007