This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A051190 a(n) = Product_{k=1..n-1} gcd(k,n). 6
 1, 1, 1, 2, 1, 12, 1, 16, 9, 80, 1, 3456, 1, 448, 2025, 2048, 1, 186624, 1, 1024000, 35721, 11264, 1, 573308928, 625, 53248, 59049, 179830784, 1, 1007769600000, 1, 67108864, 7144929, 1114112, 37515625, 160489808068608, 1, 4980736, 89813529 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS a(n) > 1 if and only if n is composite. - Charles R Greathouse IV, Jan 04 2013 LINKS T. D. Noe, Table of n, a(n) for n = 1..200 OEIS Wiki, Generalizations of the factorial FORMULA a(n) = Product_{ d divides n, d < n } d^phi(n/d). - Peter Luschny, Apr 07 2013 a(n) = A067911(n) / n. - Peter Luschny, Apr 07 2013 Product_{j=1..n} Product_{k=1..j-1} gcd(j,k), n >= 1. - Daniel Forgues, Apr 11 2013 a(n) = sqrt( (1/n) * (A092287(n) / A092287(n-1)) ). - Daniel Forgues, Apr 13 2013 MAPLE A051190 := proc(n) local i; mul(igcd(n, i ), i = 1..(n-1)) end; MATHEMATICA a[n_] := If[PrimeQ[n], 1, Times @@ (GCD[n, #]& /@ Range[n-1])]; Table[a[n], {n, 1, 39}]  (* Jean-François Alcover, Jul 18 2012 *) Table[Times @@ GCD[n, Range[n-1]], {n, 50}] (* T. D. Noe, Apr 12 2013 *) PROG (Haskell) a051190 n = product \$ map (gcd n) [1..n-1] -- Reinhard Zumkeller, Nov 22 2011 (PARI) a(n)=my(f=factor(n)); prod(i=1, #f[, 1], prod(j=1, f[i, 2], f[i, 1]^(n\f[i, 1]^j)))/n \\ Charles R Greathouse IV, Jan 04 2013 (PARI) a(n) = prod(k=1, n-1, gcd(k, n)); /* Joerg Arndt, Apr 14 2013 */ (Sage) A051190 = lambda n: mul(gcd(n, i) for i in (1..n-1)) [A051190(n) for n in (1..39)] # Peter Luschny, Apr 07 2013 (Sage) # A second, faster version, based on the prime factorization of a(n): def A051190(n):     R = 1     if not is_prime(n) :         for p in primes(n//2+1):             s = 0; r = n; t = n-1             while r > 0 :                 r = r//p; t = t//p                 s += (r-t)*(r+t-1)             R *= p^(s/2)     return R [A051190(i) for i in (1..1000)]  # Peter Luschny, Apr 08 2013 CROSSREFS Cf. A067911, A006579, A224479, A092287. Sequence in context: A161150 A163088 A105608 * A072512 A271531 A118588 Adjacent sequences:  A051187 A051188 A051189 * A051191 A051192 A051193 KEYWORD nonn,nice AUTHOR Antti Karttunen, Oct 21 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 18 18:43 EST 2018. Contains 318243 sequences. (Running on oeis4.)