login
Number of 7-element intersecting families of an n-element set.
7

%I #6 Jun 13 2013 15:39:30

%S 0,0,0,0,80,169125,71102400,18047221707,3623784887164,638772147728325,

%T 103751227132038920,15931275037246743999,2348130220089143792148,

%U 335520750110815538499945,46803828588394634589433120

%N Number of 7-element intersecting families of an n-element set.

%D V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).

%F 1/7! (128^n - 21*96^n + 105*80^n - 35*72^n + 105*68^n - 42*66^n + 7*65^n - 476*64^n - 630*60^n + 1785*56^n + 315*54^n - 210*52^n - 105*51^n + 1260*50^n - 105*49^n - 1575*48^n - 2520*46^n - 105*45^n + 1638*44^n + 840*43^n - 6615*42^n + 1050*41^n + 4130*40^n - 1890*39^n + 14595*38^n + 2835*37^n - 7945*36^n - 1554*35^n - 18711*34^n - 12572*33^n + 24710*32^n + 4620*31^n + 560*30^n + 25995*29^n - 16905*28^n - 13545*27^n - 6510*26^n - 42945*25^n + 12005*24^n + 102011*23^n - 4648*22^n - 87780*21^n - 15785*20^n + 43120*19^n + 21364*18^n + 4200*17^n - 37205*16^n - 17105*15^n + 36386*14^n + 28644*13^n - 57603*12^n + 24150*11^n + 4585*10^n - 16289*9^n + 20943*8^n - 12754*7^n - 287*6^n + 4137*5^n - 3388*4^n + 1764*3^n + 720*2^n - 720)

%Y Cf. A036239, A051180-A051185.

%K nonn

%O 0,5

%A _Vladeta Jovovic_, Goran Kilibarda