login
Number of 6-element intersecting families of an n-element set.
6

%I #6 Jun 13 2013 14:38:19

%S 0,0,0,0,230,91993,14037879,1509286261,136653987232,11209147489701,

%T 862949794999193,63573922606869037,4535012297248660194,

%U 315713834759742768349,21570075957885603579067

%N Number of 6-element intersecting families of an n-element set.

%D V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).

%F 1/6! (64^n - 15*48^n + 60*40^n - 15*36^n + 30*34^n - 6*33^n - 215*32^n - 180*30^n + 585*28^n + 45*27^n + 60*26^n + 150*25^n - 510*24^n - 360*23^n + 168*22^n - 585*21^n + 795*20^n + 1665*19^n - 1890*18^n - 2175*17^n + 3305*16^n + 1775*15^n - 3795*14^n - 870*13^n + 3123*12^n - 1075*11^n - 495*10^n + 1460*9^n - 2245*8^n + 1424*7^n + 150*6^n - 590*5^n + 499*4^n - 274*3^n - 120*2^n + 120)

%Y Cf. A036239, A051180-A051185.

%K nonn

%O 0,5

%A _Vladeta Jovovic_, Goran Kilibarda