This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A051180 Number of 3-element intersecting families of an n-element set. 19
 0, 0, 0, 13, 222, 2585, 25830, 238833, 2111382, 18142585, 152937510, 1271964353, 10476007542, 85662034185, 696700867590, 5643519669073, 45575393343702, 367206720319385, 2953481502692070, 23723872215168993, 190372457332919862 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, in Russian, Diskretnaya Matematika, 11 (1999), no. 4, 127-138. V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, English translation, in Discrete Mathematics and Applications, 9, (1999), no. 6. Index entries for linear recurrences with constant coefficients, signature (29,-343,2135,-7504,14756,-14832,5760). FORMULA a(n) = (1/3!)*(8^n - 3*6^n + 3*5^n - 4*4^n + 3*3^n + 2*2^n - 2). G.f. x^3*(744*x^3 - 606*x^2 + 155*x - 13)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(8*x-1)). - Colin Barker, Jul 29 2012 a(0)=0, a(1)=0, a(2)=0, a(3)=13, a(4)=222, a(5)=2585, a(6)=25830, a(n) = 29*a(n-1) - 343*a(n-2) + 2135*a(n-3) - 7504*a(n-4) + 14756*a(n-5) - 14832*a(n-6) + 5760*a(n-7). - Harvey P. Dale, Jul 07 2013 MAPLE seq(1/3!*(8^n-3*6^n+3*5^n-4*4^n+3*3^n+2*2^n-2), n=0..40); MATHEMATICA Table[1/3!(8^n-3*6^n+3*5^n-4*4^n+3*3^n+2*2^n-2), {n, 0, 30}] (* or *) LinearRecurrence[{29, -343, 2135, -7504, 14756, -14832, 5760}, {0, 0, 0, 13, 222, 2585, 25830}, 30] (* Harvey P. Dale, Jul 07 2013 *) PROG (PARI) for(n=0, 25, print1((1/3!)*(8^n-3*6^n+3*5^n-4*4^n+3*3^n+2*2^n-2), ", ")) \\ G. C. Greubel, Oct 06 2017 CROSSREFS Cf. A036239, A051181-A051185. Sequence in context: A015253 A051621 A173427 * A143832 A140841 A062127 Adjacent sequences:  A051177 A051178 A051179 * A051181 A051182 A051183 KEYWORD nonn,easy AUTHOR Vladeta Jovovic, Goran Kilibarda EXTENSIONS More terms from Sascha Kurz, Mar 25 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 17:36 EST 2019. Contains 329865 sequences. (Running on oeis4.)