This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A051179 a(n) = 2^(2^n) - 1. 28

%I

%S 1,3,15,255,65535,4294967295,18446744073709551615,

%T 340282366920938463463374607431768211455,

%U 115792089237316195423570985008687907853269984665640564039457584007913129639935

%N a(n) = 2^(2^n) - 1.

%C In a tree with binary nodes (0, 1 children only), the maximum number of unique child nodes at level n.

%C Number of binary trees (each vertex has 0, or 1 left, or 1 right, or 2 children) such that all leaves are at level n. Example: a(1) = 3 because we have (i) root with a left child, (ii) root with a right child and (iii) root with two children. a(n) = A000215(n) - 2. - _Emeric Deutsch_, Jan 20 2004

%C Similarly, this is also the number of full balanced binary trees of height n. (There is an obvious 1-to-1 correspondence between the two sets of trees.) - David Hobby (hobbyd(AT)newpaltz.edu), May 02 2010

%C Partial products of A000215.

%C The first 5 terms n (only) have the property that phi(n)=(n+1)/2, where phi(n) = A000010(n) is Euler's totient function. - _Lekraj Beedassy_, Feb 12 2007

%C If A003558(n) is of the form 2^n and A179480(n+1) is even, then (2^(A003558(n) - 1) is in the set A051179. Example: A003558(25) = 8 with A179480(25) = 4, even. Then (2^8 - 1) = 255. - _Gary W. Adamson_, Aug 20 2012

%C For any odd positive a(0), the sequence a(n) = a(n-1) * (a(n-1) + 2) gives a constructive proof that there exist integers with at least n distinct prime factors, e.g. a(n), since omega(a(n)) >= n. As a corollary, this gives a constructive proof of Euclid's theorem stating that there are an infinity of primes. - _Daniel Forgues_, Mar 07 2017

%C From _Sergey Pavlov_, Apr 24 2017: (Start)

%C I conjecture that, for n > 7, omega(a(n)) > omega(a(n-1)) > n.

%C It seems that the largest prime divisor p(n+1) of a(n+1) is always bigger than the largest prime divisor of a(n): p(n+1) > p(n). For 3 < n < 8, p(n+1) > 100 * p(n).

%C (End)

%D M. Aigner and G. M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 1999; see p. 4.

%H Vincenzo Librandi, <a href="/A051179/b051179.txt">Table of n, a(n) for n = 0..13</a>

%H For rate of growth see A. V. Aho and N. J. A. Sloane, <a href="http://neilsloane.com/doc/doubly.html">Some doubly exponential sequences</a>, Fib. Quart., 11 (1973), 429-437.

%H <a href="/index/Aa#AHSL">Index entries for sequences of form a(n+1)=a(n)^2 + ...</a>

%F a(n) = A000215(n) - 2.

%F a(n) = (a(n-1) + 1)^2 - 1, a(0) = 1. [ or a(n) = a(n-1)(a(n-1) + 2) ].

%F 1 = 2/3 + 4/15 + 16/255 + 256/65535 + ... = Sum_{n>=0} A001146(n)/a(n+1) with partial sums: 2/3, 14/15, 254/255, 65534/65535, ... - _Gary W. Adamson_, Jun 15 2003

%F a(n) = b(n-1) where b(1)=1, b(n) = Product_{k=1..n-1} (b(k) + 2). - _Benoit Cloitre_, Sep 13 2003

%F A136308(n) = A007088(a(n)). - _Jason Kimberley_, Dec 19 2012

%F A000215(n) = a(n+1) / a(n). - _Daniel Forgues_, Mar 07 2017

%e 15 = 3*5; 255 = 3*5*17; 65535 = 3*5*17*257; 4294967295 = 3*5*17*257*65537;

%e 18446744073709551615 = 3*5*17*257*641*65537*6700417;

%e 340282366920938463463374607431768211455 = 3*5*17*257*641*65537*274177*6700417*67280421310721; ... - _Daniel Forgues_, Mar 07 2017

%p A051179:=n->2^(2^n)-1; seq(A051179(n), n=0..8); # _Wesley Ivan Hurt_, Feb 08 2014

%t Table[2^(2^n)-1,{n,0,9}] (* _Vladimir Joseph Stephan Orlovsky_, Mar 16 2010 *)

%o (PARI) a(n)=if(n<0,0,2^2^n-1)

%o (MAGMA) [2^(2^n)-1: n in [0..8]]; // _Vincenzo Librandi_, Jun 20 2011

%Y Cf. A001146, A007018.

%Y Cf. A003558, A179480, A000215.

%K nonn,easy,nice

%O 0,2

%A Alan DeKok (aland(AT)ox.org)

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.