login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051158 Decimal expansion of Sum_{n >= 0} 1/(2^2^n+1). 3
5, 9, 6, 0, 6, 3, 1, 7, 2, 1, 1, 7, 8, 2, 1, 6, 7, 9, 4, 2, 3, 7, 9, 3, 9, 2, 5, 8, 6, 2, 7, 9, 0, 6, 4, 5, 4, 6, 2, 3, 6, 1, 2, 3, 8, 4, 7, 8, 1, 0, 9, 9, 3, 2, 6, 2, 1, 4, 4, 2, 4, 5, 9, 9, 6, 0, 9, 1, 0, 8, 9, 9, 7, 7, 4, 8, 8, 6, 0, 8, 8, 8, 9, 9, 3, 6, 1, 9, 1, 8, 4, 6, 4, 6, 4, 4, 0, 7, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

S.W. Golomb, On the sum of the reciprocals of the Fermat numbers and related irrationalities, Canad. J. Math., 15 (1963), 475-478.

LINKS

Table of n, a(n) for n=0..98.

Joerg Arndt: Matters Computational (The Fxtbook), section 38.7, p.740 (gives method for divisionless computation corresponding to pari/gp code below).

M. Coons, On the rational approximation of the sum of the reciprocals of the Fermat numbers, Raman. J. 28 (2012)

EXAMPLE

.59606317211782167942...

MATHEMATICA

RealDigits[Sum[1/(2^2^n + 1), {n, 0, 10}], 10, 111][[1]]

(* Robert G. Wilson v, Jul 03 2014 *)

PROG

(PARI) /* divisionless routine from fxtbook */

s2(y, N=7)=

{ local(in, y2, A); /* as powerseries correct to order = 2^N-1 */

    in = 1; /* 1+y+y^2+y^3+...+y^(2^k-1) */

    A = y; for(k=2, N, in *= (1+y); y *= y; A += y*(in + A); );

    return( A ); }

a=0.5*s2(0.5) /* computation of the constant 0.596063172117821... */

/* Joerg Arndt, Apr 15 2010 */

CROSSREFS

A048649 + A051158 = 2.

Terms in continued fraction: A159243 [Enrique Pérez Herrero, Nov 17 2009]

Sequence in context: A057821 A133742 A134879 * A117605 A073003 A087498

Adjacent sequences:  A051155 A051156 A051157 * A051159 A051160 A051161

KEYWORD

nonn,cons

AUTHOR

Robert Lozyniak (11(AT)onna.com)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 23 13:13 EDT 2014. Contains 248464 sequences.