

A051158


Decimal expansion of Sum_{n >= 0} 1/(2^2^n+1).


3



5, 9, 6, 0, 6, 3, 1, 7, 2, 1, 1, 7, 8, 2, 1, 6, 7, 9, 4, 2, 3, 7, 9, 3, 9, 2, 5, 8, 6, 2, 7, 9, 0, 6, 4, 5, 4, 6, 2, 3, 6, 1, 2, 3, 8, 4, 7, 8, 1, 0, 9, 9, 3, 2, 6, 2, 1, 4, 4, 2, 4, 5, 9, 9, 6, 0, 9, 1, 0, 8, 9, 9, 7, 7, 4, 8, 8, 6, 0, 8, 8, 8, 9, 9, 3, 6, 1, 9, 1, 8, 4, 6, 4, 6, 4, 4, 0, 7, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


REFERENCES

S.W. Golomb, On the sum of the reciprocals of the Fermat numbers and related irrationalities, Canad. J. Math., 15 (1963), 475478.


LINKS

Table of n, a(n) for n=0..98.
Joerg Arndt: Matters Computational (The Fxtbook), section 38.7, p.740 (gives method for divisionless computation corresponding to pari/gp code below).
M. Coons, On the rational approximation of the sum of the reciprocals of the Fermat numbers, Raman. J. 28 (2012)


EXAMPLE

.59606317211782167942...


MATHEMATICA

RealDigits[Sum[1/(2^2^n + 1), {n, 0, 10}], 10, 111][[1]]
(* Robert G. Wilson v, Jul 03 2014 *)


PROG

(PARI) /* divisionless routine from fxtbook */
s2(y, N=7)=
{ local(in, y2, A); /* as powerseries correct to order = 2^N1 */
in = 1; /* 1+y+y^2+y^3+...+y^(2^k1) */
A = y; for(k=2, N, in *= (1+y); y *= y; A += y*(in + A); );
return( A ); }
a=0.5*s2(0.5) /* computation of the constant 0.596063172117821... */
/* Joerg Arndt, Apr 15 2010 */


CROSSREFS

A048649 + A051158 = 2.
Terms in continued fraction: A159243 [Enrique Pérez Herrero, Nov 17 2009]
Sequence in context: A057821 A133742 A134879 * A117605 A073003 A087498
Adjacent sequences: A051155 A051156 A051157 * A051159 A051160 A051161


KEYWORD

nonn,cons


AUTHOR

Robert Lozyniak (11(AT)onna.com)


STATUS

approved



