login
a(n) = (2^p^2 - 1)/(2^p - 1) where p is the n-th prime.
8

%I #21 Mar 06 2020 00:16:18

%S 5,73,1082401,4432676798593,1298708349570020393652962442872833,

%T 91355004067076339167413824240109498970069278721,

%U 7588608256743087977590500540116743445925584618982806531428980886590618779326218241

%N a(n) = (2^p^2 - 1)/(2^p - 1) where p is the n-th prime.

%C Note that a(n) = Phi(p,2^p) or a(n) = Phi(p^2,2), where Phi(m,x) is the m-th cyclotomic polynomial and p is the n-th prime. - _Thomas Ordowski_, Feb 18 2014

%F a(n) = A070526(prime(n)), a(n) = A019320(prime(n)^2). - _Thomas Ordowski_, Feb 18 2014

%t Table[Cyclotomic[Prime[n]^2, 2], {n, 7}] (* _Arkadiusz Wesolowski_, May 13 2012 *)

%t Table[(2^Prime[n]^2-1)/(2^Prime[n]-1),{n,10}] (* _Harvey P. Dale_, Apr 06 2019 *)

%Y Cf. A051154, A051155, A051157.

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_