login
Primes p such that x^6 = -2 has a solution mod p.
2

%I #19 Sep 08 2022 08:44:59

%S 2,3,11,17,41,43,59,83,89,107,113,131,137,179,227,233,251,257,281,283,

%T 307,347,353,401,419,433,443,449,457,467,491,499,521,563,569,587,593,

%U 601,617,641,643,659,683,691,739,761,809,811,827,857,881,929,947,953,971,977,1019

%N Primes p such that x^6 = -2 has a solution mod p.

%C Complement of A216734 relative to A000040. - _Vincenzo Librandi_, Sep 16 2012

%H Vincenzo Librandi, <a href="/A051072/b051072.txt">Table of n, a(n) for n = 1..1000</a>

%t ok[p_]:= Reduce[Mod[x^6 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[500]], ok] (* _Vincenzo Librandi_, Sep 15 2012 *)

%o (PARI)

%o forprime(p=2, 2000, if([]~!=polrootsmod(x^6+2, p), print1(p, ", "))); print();

%o /* _Joerg Arndt_, Jun 24 2012 */

%o (Magma) [p: p in PrimesUpTo(1200) | exists(t){x : x in ResidueClassRing(p) | x^6 eq - 2}]; // _Vincenzo Librandi_, Sep 15 2012

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_

%E More terms from _Joerg Arndt_, Jul 27 2011